Skip to main content
Log in

The Effect of Nonlinearity on Acoustic Streaming in Cylindrical Cavities of Different Diameters

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Acoustic streaming in vibrating cylindrical cavities of different diameters under isothermal boundary conditions is numerically investigated. Two vibration frequencies are considered at various vibration amplitudes. The influence of increasing nonlinearity of the process on the structure of acoustic streaming is determined. The dynamics of an increase in the acoustic streaming velocity with an increase in the vibration amplitude is shown. The vibration amplitudes at which shock waves are formed in the regime of steady-state oscillations are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. L. K. Zarembo, Acoustic Streaming. High-Intensity Ultrasonic Fields (Plenum, New York, 1971).

    Google Scholar 

  2. M. Nabavi, K. Siddiqui, and J. Dargahi, ‘‘Analysis of regular and irregular acoustic streaming patterns in a rectangular enclosure,’’ Wave Motion 46, 312–322 (2009).

    Article  Google Scholar 

  3. I. Reyt, V. Daru, H. Bailliet, S. Moreau, J.-C. Valiere, D. Baltean-Carles, and C. Weisman, ‘‘Fast acoustic streaming in standing waves: generation of an additional outer streaming cell,’’ J. Acoust. Soc. Am. 134, 1791–1801 (2013).

    Article  Google Scholar 

  4. V. Daru, D. Baltean-Carles, C. Weisman, P. Debesse, and G. Gandikota, ‘‘Two-dimensional numerical simulations of nonlinear acoustic streaming in standing waves,’’ Wave Motion 50, 955–963 (2013).

    Article  MathSciNet  Google Scholar 

  5. I. Reyt, H. Bailliet, and J.-C. Valiere, ‘‘Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds number,’’ J. Acoust. Soc. Am. 135, 27–37 (2014).

    Article  Google Scholar 

  6. A. A. Gubaidullin and A. V. Yakovenko, ‘‘Effects of heat exchange and nonlinearity on acoustic streaming in a vibrating cylindrical cavity,’’ J. Acoust. Soc. Am. 137, 3281–3287 (2015).

    Article  Google Scholar 

  7. A. A. Gubaidullin and A. V. Pyatkova, ‘‘Acoustic streaming with heat exchange,’’ J. Phys.: Conf. Ser. 754, 022004 (2016).

  8. V. Daru, I. Reyt, H. Bailliet, C. Weisman, and D. Baltean-Carles, ‘‘Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels,’’ J. Acoust. Soc. Am. 141, 563–574 (2017).

    Article  Google Scholar 

  9. A. A. Gubaidullin and A. V. Pyatkova, ‘‘Specificities of acoustic streaming in cylindrical cavity with increasing nonlinearity of the process,’’ Acoust. Phys.64, 18–26 (2018).

    Article  Google Scholar 

  10. A. A. Gubaidullin and A. V. Pyatkova, ‘‘Acoustic streaming with allowance for heat transfer,’’ Acoust. Phys.62, 300–305 (2016).

    Article  Google Scholar 

  11. A. A. Gubaidullin and A. V. Pyatkova, ‘‘Acoustic streaming under thermal boundary conditions of the third kind,’’ Acoust. Phys. 64, 280–286 (2018).

    Article  Google Scholar 

  12. M. Červenka and M. Bednařík, ‘‘Effect of inhomogeneous temperature fields on acoustic streaming structures in resonators,’’ J. Acoust. Soc. Am. 141, 4418–4426 (2017).

    Article  Google Scholar 

  13. M. Červenka and M. Bednařík, ‘‘Numerical study of the influence of the convective heat transport on acoustic streaming in a standing wave,’’ J. Acoust. Soc. Am. 143, 727–734 (2018).

    Article  Google Scholar 

  14. M. F. Hamilton, Y. A. Ilinskii, and E. A. Zabolotskaya, ‘‘Thermal effects on acoustic streaming in standing waves,’’ J. Acoust. Soc. Am. 114, 3092–3101 (2003).

    Article  Google Scholar 

  15. A. A. Gubaidullin and A. V. Pyatkova, ‘‘Features of the acoustic flow under isothermal boundary conditions in cavities of different diameters,’’ Vestn. Tyumen. Univ.4, 105–117 (2018).

    Article  Google Scholar 

  16. A. A. Gubaidullin and A. V. Pyatkova, ‘‘Acoustic streaming in a cylindrical cavity at variation of its radius and boundary conditions,’’ Thermophys. Aeromech. 26, 889–899 (2019).

    Article  Google Scholar 

  17. A. A. Gubaidullin and A. V. Pyatkova, ‘‘Acoustic streaming and temperature field in the cavity with isothermal and adiabatic boundary conditions at the ends,’’ Lobachevskii J. Math.40 (11), 1994–1999 (2019).

    Article  MathSciNet  Google Scholar 

  18. M. K. Aktas and T. Ozgumus, ‘‘The effects of acoustic streaming on thermal convection in an enclosure with differentially heated horizontal walls,’’ Int. J. Heat Mass Transfer 53, 5289–5297 (2010).

    Article  Google Scholar 

Download references

Funding

The research was carried out within the framework of the Program of Fundamental Scientific Research of the State Academies of Sciences in 2013–2020 (project no. AAAA-A17-117030610130-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Gubaidullin or A. V. Pyatkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubaidullin, A.A., Pyatkova, A.V. The Effect of Nonlinearity on Acoustic Streaming in Cylindrical Cavities of Different Diameters. Lobachevskii J Math 41, 1196–1201 (2020). https://doi.org/10.1134/S1995080220070185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220070185

Keywords:

Navigation