Skip to main content
Log in

Numerical Research of the Gas Hydrate Decomposition in a Porous Reservoir with Impermeable Boundaries

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In a one-dimensional approximation, the decomposition of gas hydrate in a porous reservoir saturated in the initial state with methane and its hydrate was numerically researched. The upper and lower boundaries of the hydrate-containing reservoir are impervious to the decomposition products of methane hydrate. At the porous reservoir upper boundary, a small increase in temperature occurs, and this temperature is maintained constant. Mathematical model of the studied process is proposed. This model takes into account the possible decomposition of gas hydrate. The influence of the parameters of the ‘‘porous reservoir—saturating fluid’’ system and the porous reservoir upper boundary temperature on the growth rate of the decomposition zone of methane hydrate and pressure at the hydrate-containing reservoir upper boundary are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. D. Archer, ‘‘Methane hydrate stability and anthropogenic climate change,’’ Biogeosciences 4, 521–544 (2007).

    Article  Google Scholar 

  2. A. A. Vasilev, V. P. Melnikov, P. B. Semenov, G. E. Oblogov, and I. D. Streletskaya, ‘‘Methane concentration and emission in dominant landscapes of typical tundra of Western Yamal,’’ Dokl. Earth Sci. 485, 284–287 (2019).

    Article  Google Scholar 

  3. A. A. Vasiliev, V. P. Melnikov, I. D. Streletskaya, and G. E. Oblogov, ‘‘Permafrost aggradation and methane production in low accumulative laidas (tidal flats) of the Kara Sea,’’ Dokl. Earth Sci. 476, 1069–1072 (2017).

    Article  Google Scholar 

  4. Y. F. Makogon, S. A. Holditch, and T. Y. Makogon, ‘‘Natural gas-hydrates—A potential energy source for the 21st century,’’ J. Pet. Sci. Eng. 56, 14–31 (2007).

    Article  Google Scholar 

  5. E. Chuvilin, V. Ekimova, B. Bukhanov, S. Grebenkin, N. Shakhova, and I. Semiletov, ‘‘Role of salt migration in destabilization of intra permafrost hydrates in the Arctic shelf: Experimental modeling,’’ Geosciences 9, 188 (2019).

    Article  Google Scholar 

  6. V. Sh. Shagapov and L. A. Nasyrova, ‘‘The heating of porous medium partly filled with gas hydrate in the presence of impermeable boundaries,’’ High Temp. 37, 754–759 (1999).

    Google Scholar 

  7. A. A. Chernov, D. S. Elistratov, I. V. Mezentsev, A. V. Meleshkin, and A. A. Pil’nik, ‘‘Hydrate formation in the cyclic process of refrigerant boiling-condensation in a water volume,’’ Int. J. Heat Mass Transfer 108, 1320–1323 (2017).

    Article  Google Scholar 

  8. V. Sh. Shagapov, Yu. A. Yumagulova, and N. G. Musakaev, ‘‘Theoretical study of the limiting regimes of hydrate formation during contact of gas and water,’’ J. Appl. Mech. Tech. Phys. 58, 189–199 (2017).

    Article  MathSciNet  Google Scholar 

  9. N. G. Musakaev, S. L. Borodin, and D. S. Belskikh, ‘‘The problem of heat exposure to a closed hydrate-saturated area of a porous stratum,’’ AIP Conf. Proc.2125, 020021 (2019).

  10. N. G. Musakaev, S. L. Borodin, and M. K. Khasanov, ‘‘The mathematical model of the gas hydrate deposit development in permafrost,’’ Int. J. Heat Mass Transfer118, 455–461 (2018).

    Article  Google Scholar 

  11. R. I. Nigmatulin, Dynamics of Multiphase Media (Hemisphere, New York, 1991).

    Google Scholar 

  12. E. A. Bondarev, I. I. Rozhin, V. V. Popov, and K. K. Argunova, ‘‘Underground storage of natural gas in hydrate state: Primary injection stage,’’ J. Eng. Thermophys. 27, 221–232 (2018).

    Article  Google Scholar 

  13. N. G. Musakaev and M. K. Khasanov, ‘‘Solution of the problem of natural gas storages creating in gas hydrate state in porous reservoirs,’’ Mathematics 8, 36 (2020).

    Article  Google Scholar 

  14. S. Sh. Byk, Y. F. Makogon, and V. I. Fomina,Gas Hydrates (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

  15. V. Sh. Shagapov, R. R. Urazov, and N. G. Musakaev, ‘‘Dynamics of formation and dissociation of gas hydrates in pipelines at the various modes of gas transportation,’’ Heat Mass Transfer 48, 1589–1600 (2012).

    Article  Google Scholar 

  16. Y. F. Makogon, Hydrates of Natural Gas (PennWell, Tulsa, OK, USA, 1997).

    Google Scholar 

  17. S. Y. Misyura and I. G. Donskoy, ‘‘Dissociation kinetics of methane hydrate and CO2 hydrate for different granular composition,’’ Fuel 262, 116614 (2020).

  18. M. K. Khasanov, G. R. Rafikova, and N. G. Musakaev, ‘‘Mathematical model of carbon dioxide injection into a porous reservoir saturated with methane and its gas hydrate,’’ Energies 13, 440 (2020).

    Article  Google Scholar 

Download references

Funding

The research was carried out within the framework of the Program of Fundamental Scientific Research of the state academies of sciences in 2013-2020 (project no. AAAA-A17-117030610130-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. G. Musakaev or S. L. Borodin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musakaev, N.G., Borodin, S.L. Numerical Research of the Gas Hydrate Decomposition in a Porous Reservoir with Impermeable Boundaries. Lobachevskii J Math 41, 1267–1271 (2020). https://doi.org/10.1134/S1995080220070318

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220070318

Keywords:

Navigation