Skip to main content

Advertisement

Log in

Liver Cancer Cells Uptake Labile Iron via L-type Calcium Channel to Facilitate the Cancer Cell Proliferation

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Herein, we studied the effect of labile iron (ferric chloride) on the progression of liver cancer cells (HepG2.2.15). The iron was found to induce cell proliferation, growth, and migration in both traditional two-dimensional (2D) and three-dimensional cell (3D) culture models. Biophysical and cell cycle determinations also showed the change in functional cellular biophysical features (cell morphology) and cell cycle kinetic during cancer cell growth induced by the labile iron. According to immunofluorescence and the iron uptake inhibition studies, L-type calcium channel was found to plays a role in the iron uptake in the liver cancer cells. This report gives new insights into iron-mediated cancer cell growth and will pave the new way to diagnosis and treatment of liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dhar, D., Antonucci, L., Nakagawa, H., Kim, J. Y., Glitzner, E., Caruso, S., Shalapour, S., Yang, L., Valasek, M. A., Lee, S., Minnich, K., Seki, E., Tuckermann, J., Sibilia, M., Zucman-Rossi, J., & Karin, M. (2018). Liver Cancer Initiation Requires p53 Inhibition by CD44-Enhanced Growth Factor Signaling. Cancer Cell, 33, 1061–1077.e1066.

    Article  CAS  Google Scholar 

  2. Khosla, R., Rastogi, A., Ramakrishna, G., Pamecha, V., Mukhopadhyay, A., Vasudevan, M., Sarin, S. K., & Trehanpati, N. (2017). EpCAM+ liver cancer stem-like cells exhibiting autocrine Wnt signaling potentially originate in cirrhotic patients. Stem Cells Translational Medicine, 6, 807–818.

    Article  CAS  Google Scholar 

  3. Fang, S., Yu, X., Ding, H., Han, J., & Feng, J. (2018). Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors. Biochemical and Biophysical Research Communications, 503, 297–303.

    Article  CAS  Google Scholar 

  4. Drakesmith, H., Nemeth, E., & Ganz, T. (2015). Ironing out Ferroportin. Cell Metabolism, 22, 777–787.

    Article  CAS  Google Scholar 

  5. Graham, R. M., Chua, A. C., Herbison, C. E., Olynyk, J. K., & Trinder, D. (2007). Liver iron transport. World Journal of Gastroenterology, 13, 4725–4736.

    Article  CAS  Google Scholar 

  6. Pantopoulos, K., Porwal, S. K., Tartakoff, A., & Devireddy, L. (2012). Mechanisms of mammalian iron homeostasis. Biochemistry, 51, 5705–5724.

    Article  CAS  Google Scholar 

  7. Torti, S. V., & Torti, F. M. (2013). Iron and cancer: more ore to be mined. Nature Reviews Cancer, 13, 342–355.

    Article  CAS  Google Scholar 

  8. Babu, K. R., & Muckenthaler, M. U. (2019). miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma. Scientific Reports, 9, 1518.

    Article  Google Scholar 

  9. Corce, V., Gouin, S. G., Renaud, S., Gaboriau, F., & Deniaud, D. (2016). Recent advances in cancer treatment by iron chelators. Bioorganic & Medicinal Chemistry Letters, 26, 251–256.

    Article  CAS  Google Scholar 

  10. Jung, M., Mertens, C., Bauer, R., Rehwald, C., & Brüne, B. (2017). Lipocalin-2 and iron trafficking in the tumor microenvironment. Pharmacological Research, 120, 146–156.

    Article  CAS  Google Scholar 

  11. Anderson, E. R., & Shah, Y. M. (2013). Iron homeostasis in the liver, comprehensive. Physiology, 3, 315–330.

    Google Scholar 

  12. Oudit, G. Y., Sun, H., Trivieri, M. G., Koch, S. E., Dawood, F., Ackerley, C., Yazdanpanah, M., Wilson, G. J., Schwartz, A., Liu, P. P., & Backx, P. H. (2003). L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nature Medicine, 9, 1187–1194.

    Article  CAS  Google Scholar 

  13. Arjonen, A., Kaukonen, R., & Ivaska, J. (2011). Filopodia and adhesion in cancer cell motility. Cell Adhesion & Migration, 5, 421–430.

    Article  Google Scholar 

  14. Mertens, C., Mora, J., Ören, B., Grein, S., Winslow, S., Scholich, K., Weigert, A., Malmström, P., Forsare, C., Fernö, M., Schmid, T., Brüne, B., & Jung, M. (2018). Macrophage-derived lipocalin-2 transports iron in the tumor microenvironment. Oncoimmunology, 7, e1408751.

    Article  Google Scholar 

  15. Shakoor, A., Zahoor, M., Sadaf, A., Alvi, N., Fadoo, Z., Rizvi, A., Quadri, F., Tipoo, F. A., Khurshid, M., Sajjad, Z., Colan, S., & Hasan, B. S. (2014). Effect of L-type calcium channel blocker (amlodipine) on myocardial iron deposition in patients with thalassaemia with moderate-to-severe myocardial iron deposition: protocol for a randomised, controlled trial. BMJ Open, 4, e005360.

    Article  Google Scholar 

  16. Shindo, M., Torimoto, Y., Saito, H., Motomura, W., Ikuta, K., Sato, K., Fujimoto, Y., & Kohgo, Y. (2006). Functional role of DMT1 in transferrin-independent iron uptake by human hepatocyte and hepatocellular carcinoma cell, HLF. Hepatology Research, 35, 152–162.

    CAS  PubMed  Google Scholar 

  17. Liuzzi, J. P., Aydemir, F., Nam, H., Knutson, M. D., & Cousins, R. J. (2006). Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proceedings National Academy Science USA., 103, 13612–13617.

    Article  CAS  Google Scholar 

  18. Gammella, E., Recalcati, S., & Cairo, G. (2016). Dual role of ROS as signal and stress agents: iron tips the balance in favor of toxic effects. Oxidative Medicine and Cellular Longevity, 2016, 8629024.

    Article  Google Scholar 

  19. Fonseca-Nunes, A., Jakszyn, P., & Agudo, A. (2014). Iron and cancer risk–a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiology, Biomarkers & Prevention, 23, 12–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support received from the Center of Excellence on Medical Biotechnology (CEMB), the S&T postgraduate Education and Research Development Office (PERDO), The Commission on Higher Education (CHE), Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chalermchai Pilapong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phiwchai, I., Thongtem, T., Thongtem, S. et al. Liver Cancer Cells Uptake Labile Iron via L-type Calcium Channel to Facilitate the Cancer Cell Proliferation. Cell Biochem Biophys 79, 133–139 (2021). https://doi.org/10.1007/s12013-020-00951-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00951-0

Keywords

Navigation