Skip to main content
Log in

Damage by Hydroxyl Generation in Silica

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract—

When water diffuses into silica glass it reacts chemically forming nanometre sized pores that change the physical properties of the glass, for example, affect its strength. Here we discuss the effect of water on Young’s modulus, and show how it is reduced by the water reaction, whereby a proportional behaviour applies to small amounts of water involved in the reaction. The value of the elastic modulus will be not linear with the hydroxyl-quantity in the glass for very high concentrations. The relationship between hydroxyl concentration and Young’s modulus can be determined from measurements of sound wave velocity and will be represented by damage and pore models from literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Doremus, R.H., Diffusion of water in silica glass, J. Mater. Res., 1995, vol. 10, pp. 2379–2389.

    Article  CAS  Google Scholar 

  2. Brückner, R., The structure-modifying influence of the hydroxyl content of vitreous silicas, Glass Ber., 1970, vol. 43, pp. 8–12.

    Google Scholar 

  3. Brückner, R., Metastable equilibrium density of hydroxyl-free synthetic vitreous silica, J. Non-Cryst. Solids, 1971, vol. 5, pp. 281–285.

    Article  Google Scholar 

  4. Shackelford, J.F., Masaryk, J.S., and Fulrath, R.M., Water content, fictive temperature, and density relations for fused silica, J. Am. Ceram. Soc., 1970, vol. 53, p. 417.

    Article  CAS  Google Scholar 

  5. Shelby, J.E., Density of vitreous silica, J. Non-Cryst. Solids, 2004, vol. 349, pp. 331–336.

    Article  CAS  Google Scholar 

  6. Kachanov, L.M., Time of the rupture process under creep conditions, Izv. Akad. Nauk SSSR,Otd. Tek., 1958, vol. 8, pp. 26–31.

    Google Scholar 

  7. Lemaitre, J., How to use damage mechanics, Nucl. Eng. Des., 1984, vol. 80, pp. 233–245.

    Article  Google Scholar 

  8. Lemaitre, J., Evaluation of dissipation and damage in metals submitted to dynamic loadings, in Proceedings of the International Congress of Mathematicians ICM,1971, Kyoto, Japan, p. 1.

  9. Fett, T., Schell, K.G., Hoffmann, M.J., and Wiederhorn, S.M., Effect of damage by hydroxyl generation on strength of silica fibers, J. Am. Ceram. Soc., 2018, vol. 101, no. 7.

  10. Fraser, D.B., Factors influencing the acoustic properties of vitreous silica, J. Appl. Phys., 1968, vol. 39, pp. 5868–5878.

    Article  CAS  Google Scholar 

  11. Le Parc, R., Levelut, C., and Pelous, J., Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour, J. Phys.: Condens. Matter, 2006, vol. 18, pp. 7507–7527.

    CAS  Google Scholar 

  12. Ashkin, D., Haber, R.A., and Wachtman, J.B., Elastic properties of porous silica derived from colloidal gels, J. Am. Ceram. Soc., 1990, vol. 73, pp. 3376–3381.

    Article  CAS  Google Scholar 

  13. Kushibiki, J., Arakawa, M., and Ohashi, Y., A super-precise CTE evaluation method for ultra-low-expansion glasses using the LFB ultrasonic material characterization system, Jpn. J. Appl. Phys., 2005, vol. 44, pp. 4374–4380.

    Article  CAS  Google Scholar 

  14. Knudsen, F.P., Effect of porosity on Young’s modulus of alumina, J. Am. Ceram. Soc., 1962, vol. 45, pp. 94–95.

    Article  CAS  Google Scholar 

  15. Wang, J.C., Young’s modulus of porous materials. Part 2: Young’s modulus of porous alumina with changing pore structure, J. Mater. Sci., 1984, vol. 19, pp. 809–814.

    Article  CAS  Google Scholar 

  16. Phani, K.K. and Niyogi, S.K., Elastic modulus-porosity relationship for Si3N4, J. Mater. Sci. Lett., 1987, vol. 6, pp. 511–515.

    Article  CAS  Google Scholar 

  17. Phani, K.K., Niyogi, S.K., and De, A.K., Porosity dependence of fracture mechanical properties of reaction sintered Si3N4, J. Mater. Sci. Lett., 1988, vol. 7, pp. 1253–1256.

    Article  CAS  Google Scholar 

  18. Adachi, T. and Sakka, S., Dependence of the elastic moduli of porous silica gel prepared by the sol-gel method on heat-treatment, J. Mater. Sci., 1990, vol. 25, pp. 4732–4737.

    Article  CAS  Google Scholar 

  19. Yu, C., Ji, S., and Li, Q., Effects of porosity on seismic velocities, elastic moduli and Poisson’s ratios of solid materials and rocks, J. Rock. Mech. Geotech. Eng., 2016, vol. 8, pp. 35–49.

    Article  Google Scholar 

  20. Wang, J.C., Young’s modulus of porous materials. Part 1: Theoretical derivation of modulus-porosity correlation, J. Mater. Sci., 1984, vol. 19, pp. 801–808.

    Article  CAS  Google Scholar 

  21. Phani, K.K. and Niyogi, S.K., Young’s modulus of porous brittle solids, J. Mater. Sci., 1987, vol. 22, pp. 257–263.

    Article  CAS  Google Scholar 

  22. Wiederhorn, S.M., Fett, T., and Rizzi, G., Water penetration—its effect on the strength and toughness of silica glass, Metall. Mater Trans. A, 2013, vol. 44, pp. 1164–1174.

    Article  CAS  Google Scholar 

  23. Wiederhorn, S.M., Rizzi, G., Hoffmann, M.J., and Guin, J.-P., The effect of water penetration on crack growth in silica glass, Eng. Fract. Mech., 2013, vol. 100, pp. 3–16.

    Article  Google Scholar 

  24. Zouine, A., Dersch, O., Walter, G., and Rauch, F., Diffusivity and solubility of water in silica glass in the temperature range 23-200°C, Phys. Chem. Glasses – Eur.J. Glas. Sci. Technol., 2007, vol. 48, pp. 85–91.

    CAS  Google Scholar 

  25. Wiederhorn, S.M., Yi, F., and LaVan, D., Volume expansion caused by water penetration into silica glass, J. Am. Ceram. Soc., 2015, vol. 98, pp. 78–87.

    Article  CAS  Google Scholar 

  26. Wiederhorn, S.M., Rizzi, G., and Wagner, S., Stress-enhanced swelling of silica: Effect on strength, J. Am. Ceram. Soc., 2016, vol. 99, pp. 2956–2963.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Schell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schell, K.G., Fett, T., Bucharsky, E.C. et al. Damage by Hydroxyl Generation in Silica. Glass Phys Chem 46, 424–428 (2020). https://doi.org/10.1134/S1087659620050077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659620050077

Keywords:

Navigation