Skip to main content
Log in

Optical and Structural Studies of B2O3–ZnO–Na2O–Li2O Glasses Containing Ag Nano Particles

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

B2O3–ZnO–Na2O–Li2O (BZNL) based glasses containing silver nano particles (Ag NPs) were prepared by melt-quenching technique. Four reducing agents such as Bi2O3, As2O3, Sb2O3, SnO were separately used to reduce Ag+ ions into Ago atoms in the form of nano particles. The glasses were characterized by XRD, FTIR, DSC, Optical absorption and Raman spectroscopy. The amorphous nature of the prepared glasses was confirmed through XRD and SEM measurements. The EDS spectra showed that all the added elements were present in the respective glasses. The vibrational features of various functional groups like stretching vibrations of B–O linkages in BO4 tetrahedral, asymmetric stretching vibrations of B–O bond in BO3 trigonal units and vibrations of Zn–O bonds from ZnO4 groups were identified by FTIR and Raman spectroscopy. From optical absorption studies it was observed that all prepared samples except SnO did not show characteristic surface plasmon resonance (SPR) band of Ag. Therefore, all the samples were heat treated at 500oC in accordance with DSC thermogram to form Ag nano particles. The formation of Ag nanoparticles was confirmed by optical absorption spectra. The doping of SnO to BZNL-Ag glass system could assist the growth of silver nano particles was showed by a sharp peak in optical absorption spectra at 410 nm as SPR band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Anishia, S.R., Jose, M.T., Annalakshmi, O., and Ramasamy, V., Thermoluminescence properties of rare earth doped lithium magnesium borate phosphors, J. Lumin., 2011, vol. 131, pp. 2492–2498.

    Article  CAS  Google Scholar 

  2. Karunakaran, R.T., Marimuthu, K., Surendra Babu, S., and Arumugam, S., Dysprosium doped alkali fluoroborate glasses-thermal, structural and optical investigations, J. Lumin., 2010, vol. 130, p. 1067–1072.

    Article  CAS  Google Scholar 

  3. Amjad, R.J., Dousti, M.R., Sahar, M.R., Shaukat, S.F., Ghoshal, S.K., Sazali, E.S., and Nawaz, F., Silver nanoparticles enhanced luminescence of Eu3+-doped tellurite glass, J. Lumin., 2014, vol. 154, pp. 316–321.

    Article  CAS  Google Scholar 

  4. Maier, S.A. and Atwater, H.A., Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures, J. Appl. Phys., 2005, vol. 98, p. 011101.

    Article  Google Scholar 

  5. Eichelbaum, M. and Rademann, K., Plasmonic enhancement or energy transfer? On the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices, Adv. Funct. Mater., 2009, vol. 19, pp. 2045–2052.

    Article  CAS  Google Scholar 

  6. Som, T. and Karmakar, B., Synthesis and enhanced photoluminescence in novel aucore Au-Ag shell nanoparticles embedded Nd3+-doped antimony oxide glass hybrid nanocomposites, J. Quant. Spectrosc. Radiat. Transf., 2011, vol. 112, pp. 2469–2479.

    Article  CAS  Google Scholar 

  7. Balkanski, M., Wallis, R.F., Deppe, J., and Massot, M., Dynamical properties of fast-ion-conducting borate glasses, Mater. Sci. Eng., B, 1992, vol. 12, pp. 281–298.

    Article  Google Scholar 

  8. Rivera, V.A.G., Osorio, S.P.A., Ledemi, Y., Manzani, D., Messaddeq, Y., Nunes, L.A.O., and Marega, E., Jr., Localized surface plasmon resonance interaction with Er3+-doped tellurite glass, Opt. Express, 2010, vol. 18, p. 25321.

    Article  CAS  Google Scholar 

  9. Sands, R.H., Paramagnetic resonance absorption in glass, Phys. Rev., 1955, vol. 99, pp. 1222–1226.

    Article  CAS  Google Scholar 

  10. Davis, E.A. and Mott, N.F., Conduction in non-crystalline systems. 5. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philos. Mag., 1970, vol. 22, pp. 903–922.

    Article  CAS  Google Scholar 

  11. Dimitrov, V. and Sakka, S., Electronic oxide polarizability and optical basicity of simple oxides. I, J. Appl. Phys., 1996, vol. 79, pp. 1736–1740.

    Article  CAS  Google Scholar 

  12. El-Alaily, N.A. and Mohamed, R.M., Effect of irradiation on some optical properties and density of lithium borate glass, Mater. Sci. Eng., B, 2003, vol. 98, pp. 193–203.

    Article  Google Scholar 

  13. Parandamaiah, M., Kumar, K.N., Babu, S., Reddy, S.V., and Ratnakaram, Y.C., Ratnakaram, Dy3+ doped lithium sodium bismuth borate glasses for yellow luminescent photonic applications, J. Eng. Res. Appl., 2015, vol. 5, p. 126.

  14. Chakradhar, R.P.S., Nagabhushana, B.M., Chandrappa, G.T., Ramesh, K.P., and Rao, J.L., Solution combustion derived nanocrystalline Zn2SiO4 : Mn phosphors: A spectroscopic view, J. Chem. Phys., 2004, vol. 121, pp. 10250–10259.

    Article  CAS  Google Scholar 

  15. Lin, J., Sänger, D.U., Mennig, M., and Bärner, K., Sol-gel deposition and characterization of Mn2+-doped silicate phosphor films, Thin Solid Films, 2000, vol. 360, pp. 39–45.

    Article  CAS  Google Scholar 

  16. Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., and Cho, S.J., Morkoç, H., A comprehensive review of ZnO materials and devices, J. Appl. Phys., 2005, vol. 98, pp. 1–103.

    Article  Google Scholar 

  17. Menon, R., Gupta, V., Tan, H.H., Sreenivas, K., and Jagadish, C., Origin of stress in radio frequency magnetron sputtered zinc oxide thin films, J. Appl. Phys., 2011, vol. 109, p. 064905.

    Article  Google Scholar 

  18. Tarafder, A., Molla, A.R., Mukhopadhyay, S., and Karmakar, B., Fabrication and enhanced photoluminescence properties of Sm3+-doped ZnO–Al2O3–B2O 3SiO2 glass derived willemite glass-ceramic nanocomposites, Opt. Mater. (Amsterdam), 2014, vol. 36, pp. 1463–1470.

    Article  CAS  Google Scholar 

  19. Le, F., Brandl, D.W., Urzhumov, Y.A., Wang, H., Kundu, J., Halas, N.J., Aizpurua, J., and Nordlander, P., Metallic nanoparticle arrays: A common infrared absorption Raman scattering and surface-enhanced substrate for both surface-enhanced infrared absorption, ACS Nano, 2008, vol. 2, pp. 707–718.

    Article  CAS  Google Scholar 

  20. Kamitsos, E.I., Karakassides, M.A., and Chryssikos, G.D., Vibrational spectra of magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the network structure, J. Phys. Chem., 1987, vol. 91, pp. 1073–1079.

    Article  CAS  Google Scholar 

  21. Dwivedi, B.P., Rahman, M.H., Kumar, Y., and Khanna, B.N., Raman scattering study of lithium borate glasses, J. Phys. Chem. Solids, 1993, vol. 54, pp. 621–628.

    Article  CAS  Google Scholar 

  22. Dawaud, R.S.E.S., Hashim, S., Alajerami, Y.S.M., Mhareb, M.H.A., and Tamchek, N., Optical and structural properties of lithium sodium borate glasses doped Dy3+ ions, J. Mol. Struct., 2014, vol. 1075, pp. 113–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashok, A., Vamsipriya, V., Upender, G. et al. Optical and Structural Studies of B2O3–ZnO–Na2O–Li2O Glasses Containing Ag Nano Particles. Glass Phys Chem 46, 378–388 (2020). https://doi.org/10.1134/S1087659620050028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659620050028

Keywords:

Navigation