Skip to main content
Log in

The Effect of Dopant Concentration in the Nd1 – xAxMnO3Solid Solutions (A = Ba, Sr) on the Electrical Conductivity and Structural Transitions in the Temperature Range 20–1200°C

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

The Jahn–Teller effect in Nd1 – xAxMnO3 manganites (A = Ba, Sr; x = 0.15, 0.25) was studied by high-temperature X-ray diffraction and differential scanning calorimetry. The bond lengths and angles of the MnO6 octahedron characterizing the Jahn–Teller distortion were first determined for these compositions by the Rietveld method. It was found that the temperature of removal of this distortion was markedly lower than that for the undoped compound. The temperature dependences of the electrical conductivity of all the above samples were measured for the first time. The highest electrical conductivity was found for Nd0.75Sr0.25MnO3. A decrease in the strontium concentration to 15 mol % decreased the electrical conductivity by almost half. Replacing strontium with barium also decreased the electrical conductivity, which was especially noticeable at low temperatures. The effective activation energy of electrical conductivity was characteristic of the polaron charge transfer mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Nagaev, E.L., Phys. Rep., 2001, vol. 346, no. 6, pp. 387–531. https://doi.org/10.1016/S0370-1573(00)00111-3

    Article  CAS  Google Scholar 

  2. Dagotto, E., Hotta, T., and Moreo, A., Phys. Rep., 2001, vol. 344, pp. 1–153. https://doi.org/10.1016/S0370-1573(00)00121-6

    Article  CAS  Google Scholar 

  3. Kostogloudis, G.Ch., Vasilakos, N., and Ftikos, Ch., J. Eur. Ceram. Soc., 1997, vol. 17, no. 12, pp. 1513–1521. https://doi.org/10.1016/S0955-2219(97)00038-1

    Article  CAS  Google Scholar 

  4. Salamon, M.B. and Jaime, M., Rev. Mod. Phys., 2001, vol. 73, no. 3, pp. 583–628. https://doi.org/10.1103/RevModPhys.73.583

    Article  CAS  Google Scholar 

  5. Shaikh, M.W. and Varshney, D.,Mater. Sci. Semicond. Process, 2014, vol. 27, pp. 418–426. https://doi.org/10.1016/j.mssp.2014.07.015

    Article  CAS  Google Scholar 

  6. Gamzatov, A.G. and Kamilov, I.K., J. Alloys Compd., 2012, vol. 513, pp. 334–338. https://doi.org/10.1016/j.jallcom.2011.10.044

    Article  CAS  Google Scholar 

  7. Trukhanov, S.V., Khomchenko, V.A., Karpinsky, D.V., Silibin, M.V., Trukhanov, A.V., Lobanovsky, L.S., Szymczak, H., Botez, C.E., and Troyanchuk, I.O., J. Rare Earths, 2019, vol. 37, pp. 1242–1249. https://doi.org/10.1016/j.jallcom.2011.10.044

    Article  CAS  Google Scholar 

  8. Sankarajan, S., Sakthipandi, K., and Rajendran, V., Mater. Res., 2012, vol. 15, no. 4, pp. 517–521. https://doi.org/10.1590/S1516-14392012005000067

    Article  CAS  Google Scholar 

  9. Mori, T., Inoue, K., and Kamegashira, N., J. Alloys Compd., 2000, vol. 308, pp. 87–93. https://doi.org/10.1016/S0925-8388(00)00900-2

    Article  CAS  Google Scholar 

  10. Toby, B.H., J. Appl. Crystallogr., 2001, vol. 34, pp. 210–213. https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  11. Vedmid’, L.B., Vykhodets, V.B., Golikov, Yu.V., et al., Dokl. Phys. Chem., 2012, vol. 445, part 1, pp. 112–116. https://doi.org/10.1134/S0012501612070044

    Article  CAS  Google Scholar 

  12. Hossain, A., Gilev, A.R., Kiselev, E.A., and Cherepanov, V.A., AIP Conf. Proc., 2019, vol. 2063, p. 040018. https://doi.org/10.1063/1.5087350

    Article  CAS  Google Scholar 

  13. Dasgupta, N., Krishnamoorthy, R., and Thomas, J.K., Solid State Ionics, 2002, vol. 149, pp. 227–236. https://doi.org/10.1016/S0167-2738(02)00179-0

    Article  CAS  Google Scholar 

  14. Alonso, J.A., Martínez-Lope, M.J., Casais, M.T., and Fernandez-Díaz, M.T., Inorg. Chem., 2000, vol. 39, pp. 917–923. https://doi.org/10.1021/ic990921e

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was performed within the State Assignment for the Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, using the research equipment of the Center for Collective Use “Ural-M.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Fedorova.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, O.M., Vedmid’, L.B., Kozhina, G.A. et al. The Effect of Dopant Concentration in the Nd1 – xAxMnO3Solid Solutions (A = Ba, Sr) on the Electrical Conductivity and Structural Transitions in the Temperature Range 20–1200°C . Dokl Phys Chem 492, 74–80 (2020). https://doi.org/10.1134/S0012501620360014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501620360014

Keywords:

Navigation