Skip to main content

Advertisement

Log in

Impact of pesticides in properties of Bradyrhizobium spp. and in the symbiotic performance with soybean

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Soybean [Glycine max (L.) Merr.] has great economic and nutritional importance mainly due to its high protein content. All plant's N needs can be met by the symbiosis with elite Bradyrhizobium strains applied as inoculants to the seeds at sowing time; however, the increasing use of pesticides in seed treatments can impair the contribution of the biological nitrogen fixation. In this study, we report decreases in cell survival of two strains, B. japonicum SEMIA 5079 and B. elkanii SEMIA 587 in seeds inoculated and treated with StandakTop™, composed of the fungicides pyraclostrobin and thiophanate-methyl and the insecticide fipronil, the pesticides most used in soybean seed treatment in several countries. Cell death was enhanced with the time of exposure to the pesticides, and B. elkanii was less tolerant, with almost no detectable viable cells after 15 days. Change in colony morphology with smaller colonies was observed in the presence of the pesticides, being more drastic with the time of exposure, and attributed to an adaptive response towards survival in the presence of the abiotic stress. However, morphological changes were reversible after elimination of the stressing agent and symbiotic performance under controlled greenhouse conditions was similar between strains that had been or not exposed to the pesticides. In addition, no changes in DNA profiles (BOX-PCR) of both strains were observed after the contact with the pesticides. In two field experiments, impacting effects of the pesticides were observed mainly on the total N accumulated in grains of plants relying on both N2-fixation and N-fertilizer. Our data indicate that StandakTop® affects parameters never reported before, including colony morphology of Bradyrhizobium spp. and N metabolism and/or N remobilization to soybean grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All datasets generated or analyzed during this study are included in the manuscript, and complementary dataset will be available upon request to the corresponding author.

References

  • Araujo RS, da Cruz SR, Souchie EL, Martin TN, Nakatani AS, Nogueira MA, Hungria, M (2017) Pre-inoculation of soybean seeds treated with agrochemicals up to 30 days before sowing: Technological innovation for large-scale agriculture. Int J Microbiol 2017:ID 5914786. https://doi.org/10.1155/2017/5914786

  • Boddey LH, Hungria M (1997) Phenotypic grouping of Brazilian Bradyrhizobium strains which nodulate soybean. Biol Fertil Soils 25:407–415. https://doi.org/10.1007/s003740050333

    Article  CAS  Google Scholar 

  • Bueno CJ, Meyer MC, Souza NL (2003) Efeito de fungicidas na sobrevivência de Bradyrhizobium japonicum (SEMIA 5019 e SEMIA 5079) e na nodulação da soja. Acta Sci Agron 25:231–235. https://doi.org/10.4025/actasciagron.v25i1.2676

    Article  Google Scholar 

  • Campo RJ, Hungria M (2000) Compatibilidade de uso de inoculantes e fungicidas no tratamento de sementes de soja. Boletim de Pesquisa 4, Londrina, PR: Embrapa Soja.

  • Campo RJ, Araujo RS, Hungria M (2009) Nitrogen fixation with the soybean crop in Brazil: Compatibility between seed treatment with fungicides and bradyrhizobial inoculants. Symbiosis 48:154–163. https://doi.org/10.1007/BF03179994

    Article  CAS  Google Scholar 

  • Casteriano A, Wilkes MA, Deaker R (2013) Physiological changes in rhizobia after growth in peat extract may be related to improved desiccation tolerance. Appl Environ Microbiol 79(13):3998–4007. https://doi.org/10.1128/AEM.00082-13

    Article  CAS  Google Scholar 

  • Cerezini P, Kuwano B, Santos M, Terassi F, Hungria M, Nogueira MA (2016) Strategies to promote early nodulation in soybean under drought. Field Crop Res 196:160–167. https://doi.org/10.1016/j.fcr.2016.06.017

    Article  Google Scholar 

  • Chantratita N, Wuthiekanun V, Boonbumrung K, Tiyawisutsri R, Vesaratchavest M, Limmathurotsakul D, Chierakul D, Wongratanacheewin S, Pukritiyakamee S, White NJ, Day NPJ, Peacock SJ (2007) Biological relevance of colony morphology and phenotypic switching by Burkholderia pseudomallei. J Bacteriol 189:807–817. https://doi.org/10.1128/JB.01258-06

    Article  CAS  Google Scholar 

  • Chibeba AM, Guimarães MF, Brito OR, Araujo RS, Nogueira MA, Hungria M (2015) Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. Amer J Plant Sci 6:1641–1649. https://doi.org/10.4236/ajps.2015.610164

    Article  Google Scholar 

  • Chibeba AM, Kyei-Boahen S, Guimarães MF, Nogueira MA, Hungria M (2017) Isolation, characterization and selection of indigenous Bradyrhizobium strains with outstanding symbiotic performance to increase soybean yields in Mozambique. Agric Ecosyst Environ 246:291–305. https://doi.org/10.1016/j.agee.2017.06.017

    Article  CAS  Google Scholar 

  • Costa MR, Touro JC, Goulart ACP, Mercante FM (2013) Sobrevivência de Bradyrhizobium japonicum em sementes de soja tratadas com fungicidas e os efeitos sobre a nodulação e a produtividade da cultura. Summa Phytopathol 39:186–192. https://doi.org/10.1590/S0100-54052013000300007

    Article  Google Scholar 

  • Delamuta JRR, Ribeiro RA, Ormeño-Orrilho E, Melo IS, Martínez-Romero E, Hungria M (2013) Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum Group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 63:3342–3351. https://doi.org/10.1099/ijs.0.049130-0

    Article  CAS  Google Scholar 

  • Donagema GK, Campos DVB, Calderano SB, Teixeira WG, Viana JHM (2011) Manual de métodos de análise de solos. Documentos 132. Embrapa Solos, Rio de Janeiro

  • Embrapa Soja (2013) Tecnologias de produção de soja—Região Central do Brasil 2014. Sistemas de Produção 16, Londrina, PR: Embrapa Soja.

  • Fehr WR, Caviness CE (1977) Stages of soybean development. Special Report 87. Iowa State University, Ames

  • Feigl F, Anger V (1972) Spot tests in inorganic analysis, 6th edn. Elsevier, Amsterdam.

  • Feng L, Roughley RJ, Copeland L (2002) Morphological changes of rhizobia in peat cultures. Appl Environ Microbiol 68(3):1064–1070. https://doi.org/10.1128/aem.68.3.1064-1070.2002

    Article  CAS  Google Scholar 

  • Ferreira E, Nogueira MA, Fukami J, Conceição RB, Hungria M (2011) Nova legislação, recomendação de doses de inoculantes e pré-inoculação: riscos ao sucesso da contribuição da fixação biológica do nitrogênio para a cultura da soja. Resumos da XXXII reunião de pesquisa da soja na região central do Brasil, Londrina. PR, Embrapa Soja, pp 325–327

    Google Scholar 

  • Fleeker JR, Lacy HM, Schultz IR, Houkom EC (1974) Persistence and metabolism of thiophanate-methyl in soil. J Agric Food Chem 22:592–595. https://doi.org/10.1021/jf60194a046

    Article  CAS  Google Scholar 

  • Gomes YCB, Dalchiavon FC, Valadão FCA (2017) Joint use of fungicides, insecticides and inoculants in the treatment of soybean seeds. Rev Ceres 64:258–265. https://doi.org/10.1590/0034-737x201764030006

    Article  Google Scholar 

  • Hill CB, Bowen CR, Hartman GL (2013) Effect of fungicide application and cultivar on soybean green stem disorder. Plant Dis 97:1212–1220. https://doi.org/10.1094/PDIS-12-12-1191-RE

    Article  CAS  Google Scholar 

  • Hungria M, Mendes IC (2015) Nitrogen fixation with soybean: the perfect symbiosis? In: Bruijn FJ (ed) Biological nitrogen fixation. Wiley, New Jersey, pp 1009–1023

    Chapter  Google Scholar 

  • Hungria M, Nogueira MA (2019) Tecnologias de inoculação da cultura da soja: Mitos, verdades e desafios. Boletim de Pesquisa 2019/2020, Rondonópolis, MT: Fundação MT, pp 50–62.

  • Hungria M, Araujo RS, Silva Júnior EB (2017) Zilli JE (2017) Inoculum rate effects on the soybean symbiosis in new or old fields under tropical conditions. Agron J 109:1106–1112. https://doi.org/10.2134/agronj2016.11.0641

    Article  Google Scholar 

  • Hungria M, Campo RJ, Mendes IC, Graham PH (2006) Contribution of biological nitrogen fixation to the N nutrition of grain crops in the tropics: The success of soybean (Glycine max L. Merr.) in South America. In: Singh RP, Shankar N, Jaiwa PK (eds), Nitrogen nutrition and sustainable plant productivity. Studium Press, Houston, pp 43–93.

  • Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801. https://doi.org/10.1007/s00374-012-0771-5

    Article  Google Scholar 

  • Hungria M, Nogueira MA, Araujo RS (2015) Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: A new biotechnological tool to improve yield and sustainability. Am J Plant Sci 6:811–817. https://doi.org/10.4236/ajps.2015.66087

    Article  CAS  Google Scholar 

  • Hungria M, Nogueira MA, Campos LJM, Menna P, Brandi F, Ramos YG (2020) Seed pre-inoculation with Bradyrhizobium as time-optimizing option for large-scale soybean cropping systems. Agron J. https://doi.org/10.1002/agj2.20392

    Article  Google Scholar 

  • Hungria M, O’Hara GW, Zilli JE, Araujo RS, Deaker R, Howieson J (2016) Isolation and growth of rhizobia. In: Howieson JG, Dilworth MJ (eds) Working with rhizobia. Camberra, Australian Centre for International Agricultural Research, pp 39–60

    Google Scholar 

  • Kanungo M, Joshi J (2014) Impact of pyraclostrobin (F-500) on crop plants. Plant Sci 1:174–178

    Google Scholar 

  • Köehle H, Grossmann K, Jabs T, Gerhard M, Kaiser MW, Glaab J, Conrath U, Seehaus K, Herms S (2002) Physiological effects of the strobilurin fungicide F 500 on plants. In: Dehne HW, Giss U, Juck KH, Russel PE, Lyr H (eds) Modern fungicides and antifungal compounds III. Bonn, Nordrhein-Westfalen, AgroConcept GmbH, pp 61–74

    Google Scholar 

  • Kunal G, Sharma P (2011) Influence of pesticide-treated seeds on survival of Mesorhizobium sp. Cicer, symbiotic efficiency and yield in chickpea. Plant Protect Sci 47:37–43

    Article  Google Scholar 

  • Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361. https://doi.org/10.1099/00207713-38-4-358

    Article  CAS  Google Scholar 

  • Lopes AM, Schumacher PV, Martínez ATP, Netto APC, Chalfun-Junior A (2018) Insights into the positive effect of pyraclostrobin on sugarcane productivity. Agronomy 8(7):122. https://doi.org/10.3390/agronomy8070122

    Article  CAS  Google Scholar 

  • Machineski GS, Scaramal AS, Matos MA, Machineski O, Colozzi Filho A (2018) Efficiency of pre-inoculation of soybeans with Bradyrhizobium up to 60 days before sowing. Afr J Agric Res 13:1233–1242. https://doi.org/10.5897/AJAR2018.13108

    Article  CAS  Google Scholar 

  • MAPA (Ministério da Agricultura, Pecuária e Abastecimento). (2010) Instrução Normativa Nº 30, de 12 de novembro de 2010 [In Portuguese]. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-30-2010-dou-17-11-10-metodo-inoculantes.pdf/view. Accessed 30 April 2020

  • MAPA (Ministério da Agricultura, Pecuária e Abastecimento). (2011). Instrução Normativa Nº 13, de 24 de março de 2011 [In Portuguese]. Available at https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-sda-13-de-24-03-2011-inoculantes.pdf/view. Accessed 30 April 2020.

  • Mastrodomenico AT, Purcell, LC (2012) Soybean nitrogen fixation and nitrogen remobilization during reproductive development. Crop Sci 52:1281–1289. https://doi.org/10.2135/cropsci2011.08.0414

  • Menna P, Pereira AA, Bangel EV, Hungria M (2009) rep-PCR of tropical rhizobia for strain fingerprinting, biodiversity appraisal and as a taxonomic and phylogenetic tool. Symbiosis 48:120–130. https://doi.org/10.1007/BF03179991

  • Ormeño-Orrillo E, Hungria M, Martinez-Romero E (2013) Dinitrogen-fixing prokaryotes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson FT (eds) The Prokaryotes: prokaryotic physiology and piochemistry, 4th edn. Springer, Heidelberg, pp 427–451

    Chapter  Google Scholar 

  • Penna C, Massa R, Olivieri F, Gutkimd G, Cassán FD (2011) A simple method to evaluate the number of bradyrhizobia on soybean seeds and its implication on inoculant quality control. AMB Express 1:21. https://doi.org/10.1186/2191-0855-1-21

    Article  Google Scholar 

  • Santos MS, Nogueira MA, Hungria M (2019) Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 9:205. https://doi.org/10.1186/s13568-019-0932-0

    Article  Google Scholar 

  • Santos MS, Rodrigues TF, Ferreira E, Megías M, Nogueira MA, Hungria M (2020) Method for recovering and counting viable cells from maize seeds inoculated with Azospirillum brasilense. J Pure Appl Microbiol 14:195–204

    Article  CAS  Google Scholar 

  • Silva FC (2009) Manual de análises químicas de solos, plantas e fertilizantes, 2nd edn. Embrapa Informação Tecnológica, Brasília, DF

    Google Scholar 

  • Sinclair TR, Wit CT (1976) Analysis of the carbon and nitrogen limitations to soybean yield. Agron J 68:319–324. https://doi.org/10.2134/agronj1976.00021962006800020021x

    Article  CAS  Google Scholar 

  • UNCTAD (United Nations Conference on Trade and Development) (2016) Soy beans an INFOCOMM commodity profile. New York and Geneva: United Nations Conference on Trade and Devlopment.

  • USDA (United States Department of Agriculture) (2020) World agricultural production (Circular Series WAP 3-20 March 2020). https://apps.fas.usda.gov/psdonline/circulars/production.pdf. Accessed 01 April 2020.

  • Wang Y, Liu Y, Ding W (2020) The phenotype and pathogenicity of Ralstonia solanacearum transformed under prolonged stress of excessive exogenous nitrogen. J Phytopathol 168:175–183. https://doi.org/10.1111/jph.12879

    Article  CAS  Google Scholar 

  • Warton DI, Weber NC (2002) Common slope tests for errors-in-variables models. Biometrical J 44:161–174. https://doi.org/10.1002/1521-4036(200203)44:2%3c161::AID-BIMJ161%3e3.0.CO;2-N

    Article  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291. https://doi.org/10.1017/S1464793106007007

    Article  Google Scholar 

  • Warton DI, Duursma RA, Falster DS, Taskinen S (2012) smart 3 – an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259. https://doi.org/10.1111/j.2041-210X.2011.00153.x

    Article  Google Scholar 

  • Yates RJ, Howieson JG, Hungria M, Bala A, O’Hara GW, Terpolilli J (2016) Authentication of rhizobia and assessment of the legume symbiosis in controlled plant growth systems. In: Howieson JG, Dilworth MJ (eds) Working with rhizobia. Camberra, Australian Centre for International Agricultural Research, pp 75–108

    Google Scholar 

  • Zilli JE, Ribeiro KG, Campo RJ, Hungria M (2009) Influence of fungicide seed treatment on soybean nodulation and grain yield. Rev Bras Ciênc Solo 33:917–923. https://doi.org/10.1590/S0100-06832009000400016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T. F. Rodrigues acknowledges an MSc fellowship and F.R. Bender and A.W.S. Sanzovo PhD fellowships from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil—Finance Code 001). Author acknowledge to Dr. Artur B. L. Rondina for suggestions on the study and on the manuscript. M.A. Nogueira and M. Hungria are also research fellows from CNPq (Brazilian National Research Council for Science and Technology).

Funding

Funded by INCT-Plant-Growth Promoting Microorganisms for Agricultural Sustainability and Environmental Responsibility (CNPq 465133/2014–2, Fundação Araucária-STI-043/2019, CAPES), Embrapa, CNPq-Universal (400468/2016–6).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: TFR, MAN, MH. Performed the experiments: TFR, FRB, AWSS, EF. Analyzed the data: TFR, FRB, AWSS, EF, MAN, MH. Contributed reagents/materials/analysis tools: MH Wrote the paper: TRF, MAN, MH. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mariangela Hungria.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The authors declare no ethical conflicts.

Informed consent

Authors declare that they have consented to participate in the manuscript and publish it.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, T.F., Bender, F.R., Sanzovo, A.W.S. et al. Impact of pesticides in properties of Bradyrhizobium spp. and in the symbiotic performance with soybean. World J Microbiol Biotechnol 36, 172 (2020). https://doi.org/10.1007/s11274-020-02949-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02949-5

Keywords

Navigation