Skip to main content
Log in

Local structure engineering for active sites in fuel cell electrocatalysts

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this review, we surveyed the significance of local structure engineering on electrocatalysts and electrodes for the performance of oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). Both on precious metal catalysts (PMC) and non-precious metal catalysts (NPMC), the main methods to modulate local structure of active sites have been summarized. By change of atomic coordination, modulation of bonding distortion and synergy effect from hierarchical structure, local structure engineering has influence on the intrinsic activity and stability of electrocatalysts. Moreover, we emphasized the intimate correlation between lyophobicity of electrocatalysts and membrane electrodes by local structure engineering. Our review aimed to inspire the exploration of advanced electrocatalysts and mechanism study for PEMFCs based on local structure engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sen S, Ganguly S. Renew Sustain Energy Rev, 2017, 69: 1170–1181

    Article  Google Scholar 

  2. McGlade C, Ekins P. Nature, 2015, 517: 187–190

    Article  CAS  PubMed  Google Scholar 

  3. Kumari WGP, Ranjith PG, Perera MSA, Shao S, Chen BK, Lashin A, Arifi NA, Rathnaweera TD. Geothermics, 2017, 65: 44–59

    Article  Google Scholar 

  4. Khan N, Dilshad S, Khalid R, Kalair AR, Abas N. Energy Storage, 2019, 1: e49

    Article  Google Scholar 

  5. Bouzarovski S, Tirado Herrero S. Eur Urban Reg Stud, 2017, 24: 69–86

    Article  PubMed  Google Scholar 

  6. Granovskii M, Dincer I, Rosen M. Int J Hydrogen Energy, 2006, 31: 337–352

    Article  CAS  Google Scholar 

  7. Schlapbach L, Züttel A. Nature, 2001, 414: 353–358

    Article  CAS  PubMed  Google Scholar 

  8. Sopian K, Wan Daud WR. Renew Energy, 2006, 31: 719–727

    Article  CAS  Google Scholar 

  9. Jiang R, Chu D. J Power Sources, 2001, 93: 25–31

    Article  CAS  Google Scholar 

  10. Ellis MW, Von Spakovsky MR, Nelson DJ. Proc IEEE, 2001, 89: 1808–1818

    Article  CAS  Google Scholar 

  11. Zhang S, Yuan XZ, Hin JNC, Wang H, Friedrich KA, Schulze M. J Power Sources, 2009, 194: 588–600

    Article  CAS  Google Scholar 

  12. Song BY, Li MJ, Yang YW, He YL. J Clean Prod, 2020, 249: 119314

    Article  CAS  Google Scholar 

  13. Ben Liew K, Daud WRW, Ghasemi M, Leong JX, Su Lim S, Ismail M. Int J Hydrogen Energy, 2014, 39: 4870–4883

    Article  CAS  Google Scholar 

  14. Jeon IY, Choi HJ, Choi M, Seo JM, Jung SM, Kim MJ, Zhang S, Zhang L, Xia Z, Dai L, Park N, Baek JB. Sci Rep, 2013, 3: 1810

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu G, More KL, Johnston CM, Zelenay P. Science, 2011, 332: 443–447

    Article  CAS  PubMed  Google Scholar 

  16. Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y. Science, 2009, 324: 1302–1305

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Wang H, Lin D, Zhao J, Liu C, Xie J, Cui Y. Nano Res, 2017, 10: 1213–1222

    Article  CAS  Google Scholar 

  18. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Science, 2016, 351: 361–365

    Article  CAS  PubMed  Google Scholar 

  19. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Chem Soc Rev, 2015, 44: 2060–2086

    Article  CAS  PubMed  Google Scholar 

  20. Yan D, Li Y, Huo J, Chen R, Dai L, Wang S. Adv Mater, 2017, 29: 1606459

    Article  CAS  Google Scholar 

  21. Guo S, Zhang S, Sun S. Angew Chem Int Ed, 2013, 52: 8526–8544

    Article  CAS  Google Scholar 

  22. Wang Y, Tang YJ, Zhou K. J Am Chem Soc, 2019, 141: 14115–14119

    Article  CAS  PubMed  Google Scholar 

  23. Kramm UI, Herrmann-Geppert I, Behrends J, Lips K, Fiechter S, Bogdanoff P. J Am Chem Soc, 2016, 138: 635–640

    Article  CAS  PubMed  Google Scholar 

  24. Chhina H, Campbell S, Kesler O. J Power Sources, 2008, 179: 50–59

    Article  CAS  Google Scholar 

  25. Zhao Z, Li M, Zhang L, Dai L, Xia Z. Adv Mater, 2015, 27: 6834–6840

    Article  CAS  PubMed  Google Scholar 

  26. Aricò AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W. Nat Mater, 2005, 4: 366–377

    Article  PubMed  CAS  Google Scholar 

  27. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y. Nat Chem, 2011, 3: 546–550

    Article  CAS  PubMed  Google Scholar 

  28. Kim H, Lee K, Woo SI, Jung Y. Phys Chem Chem Phys, 2011, 13: 17505–17510

    Article  CAS  PubMed  Google Scholar 

  29. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J. Chem Soc Rev, 2010, 39: 2184–2202

    Article  CAS  PubMed  Google Scholar 

  30. Tsai HC, Hsieh YC, Yu TH, Lee YJ, Wu YH, Merinov BV, Wu PW, Chen SY, Adzic RR, Goddard III WA. ACS Catal, 2015, 5: 1568–1580

    Article  CAS  Google Scholar 

  31. Friebel D, Viswanathan V, Miller DJ, Anniyev T, Ogasawara H, Larsen AH, O’Grady CP, Nørskov JK, Nilsson A. J Am Chem Soc, 2012, 134: 9664–9671

    Article  CAS  PubMed  Google Scholar 

  32. Lv H, Xi Z, Chen Z, Guo S, Yu Y, Zhu W, Li Q, Zhang X, Pan M, Lu G, Mu S, Sun S. J Am Chem Soc, 2015, 137: 5859–5862

    Article  CAS  PubMed  Google Scholar 

  33. Jiang T, Luan WL, Ren YF, Fan CY, Feng Q, Turyanska L. Micropor Mesopor Mat, 2020, 305: 110382

    Article  CAS  Google Scholar 

  34. Cui LF, Chen MX, Huo G, Fu XZ, Luo JL. Chem Eng J, 2020, 395: 125158

    Article  CAS  Google Scholar 

  35. Shen H, Gracia-Espino E, Ma J, Tang H, Mamat X, Wagberg T, Hu G, Guo S. Nano Energy, 2017, 35: 9–16

    Article  CAS  Google Scholar 

  36. Sun M, Davenport D, Liu H, Qu J, Elimelech M, Li J. J Mater Chem A, 2018, 6: 2527–2539

    Article  CAS  Google Scholar 

  37. Huang K, Sasaki K, Adzic RR, Xing Y. J Mater Chem, 2012, 22: 16824–16832

    Article  CAS  Google Scholar 

  38. Kattel S, Wang G. J Phys Chem Lett, 2014, 5: 452–456

    Article  CAS  PubMed  Google Scholar 

  39. Liang W, Chen J, Liu Y, Chen S. ACS Catal, 2014, 4: 4170–4177

    Article  CAS  Google Scholar 

  40. Raciti D, Kubal J, Ma C, Barclay M, Gonzalez M, Chi M, Greeley J, More KL, Wang C. Nano Energy, 2016, 20: 202–211

    Article  CAS  Google Scholar 

  41. Zhang J, Wang Z, Zhu Z, Wang Q. J Electrochem Soc, 2015, 162: F796–F801

    Article  CAS  Google Scholar 

  42. Wang W, Lv F, Lei B, Wan S, Luo M, Guo S. Adv Mater, 2016, 28: 10117–10141

    Article  CAS  PubMed  Google Scholar 

  43. Chen YZ, Wang C, Wu ZY, Xiong Y, Xu Q, Yu SH, Jiang HL. Adv Mater, 2015, 27: 5010–5016

    Article  CAS  PubMed  Google Scholar 

  44. Wei W, Liang H, Parvez K, Zhuang X, Feng X, Müllen K. Angew Chem Int Ed, 2014, 53: 1570–1574

    Article  CAS  Google Scholar 

  45. Zhang H, Shen PK. Chem Rev, 2012, 112: 2780–2832

    Article  CAS  PubMed  Google Scholar 

  46. Eberle U, Müller B, von Helmolt R. Energy Environ Sci, 2012, 5: 8780–8798

    Article  Google Scholar 

  47. Chu S, Majumdar A. Nature, 2012, 488: 294–303

    Article  CAS  PubMed  Google Scholar 

  48. Chen H, Xu S, Pei P, Qu B, Zhang T. Int J Hydrogen Energy, 2019, 44: 5437–5446

    Article  CAS  Google Scholar 

  49. Lü X, Qu Y, Wang Y, Qin C, Liu G. Energy Convers Manage, 2018, 171: 1273–1291

    Article  Google Scholar 

  50. Wilberforce T, El-Hassan Z, Khatib FN, Al Makky A, Baroutaji A, Carton JG, Olabi AG. Int J Hydrogen Energy, 2017, 42: 25695–25734

    Article  CAS  Google Scholar 

  51. Wang FC, Fang WH. Int J Hydrogen Energy, 2017, 42: 10376–10389

    Article  CAS  Google Scholar 

  52. Fathabadi H. Energy, 2018, 143: 467–477

    Article  Google Scholar 

  53. Pollet BG, Staffell I, Shang JL. Electrochim Acta, 2012, 84: 235–249

    Article  CAS  Google Scholar 

  54. Zhao J, Jian Q, Huang Z. Energy Convers Manage, 2019, 196: 1433–1444

    Article  Google Scholar 

  55. Abdulla A, Azevedo IL, Morgan MG. Proc Natl Acad Sci USA, 2013, 110: 9686–9691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Han H, Zhang JY, Hser YI, Liang D, Li X, Wang SS, Du J, Zhao M. JMIR Mhealth Uhealth, 2018, 6: e46

    Article  PubMed  PubMed Central  Google Scholar 

  57. Whiston MM, Azevedo IL, Litster S, Whitefoot KS, Samaras C, Whitacre JF. Proc Natl Acad Sci USA, 2019, 116: 4899–4904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wei C, Rao RR, Peng J, Huang B, Stephens IEL, Risch M, Xu ZJ, Shao-Horn Y. Adv Mater, 2019, 31: 1806296

    Article  CAS  Google Scholar 

  59. Dickinson EJF, Hinds G. J Electrochem Soc, 2019, 166: F221–F231

    Article  CAS  Google Scholar 

  60. Wang R, Xu C, Bi X, Ding Y. Energy Environ Sci, 2012, 5: 5281–5286

    Article  CAS  Google Scholar 

  61. Liu M, Zhao Z, Duan X, Huang Y. Adv Mater, 2019, 31: 1802234

    Article  CAS  Google Scholar 

  62. Martinez U, Komini Babu S, Holby EF, Chung HT, Yin X, Zelenay P. Adv Mater, 2019, 31: 1806545

    Article  CAS  Google Scholar 

  63. Hou J, Yang M, Ke C, Wei G, Priest C, Qiao Z, Wu G, Zhang J. EnergyChem, 2020, 2: 100023

    Article  Google Scholar 

  64. Guerrero Moreno N, Cisneros Molina M, Gervasio D, Pérez Robles JF. Renew Sustain Energy Rev, 2015, 52: 897–906

    Article  CAS  Google Scholar 

  65. Brouzgou A, Song SQ, Tsiakaras P. Appl Catal B-Environ, 2012, 127: 371–388

    Article  CAS  Google Scholar 

  66. Yuan X, Zeng X, Zhang HJ, Ma ZF, Wang CY. J Am Chem Soc, 2010, 132: 1754–1755

    Article  CAS  PubMed  Google Scholar 

  67. Ni B, Chen R, Wu L, Xu X, Shi C, Sun P, Chen T. ACS Appl Mater Interfaces, 2020, 12: 23995–24006

    Article  CAS  PubMed  Google Scholar 

  68. Wang XX, Swihart MT, Wu G. Nat Catal, 2019, 2: 578–589

    Article  CAS  Google Scholar 

  69. Kulkarni A, Siahrostami S, Patel A, Nørskov JK. Chem Rev, 2018, 118: 2302–2312

    Article  CAS  PubMed  Google Scholar 

  70. Yang N, Peng L, Li L, Li J, Wei Z. Phys Chem Chem Phys, 2019, 21: 26102–26110

    Article  CAS  PubMed  Google Scholar 

  71. Chai GL, Qiu K, Qiao M, Titirici MM, Shang C, Guo Z. Energy Environ Sci, 2017, 10: 1186–1195

    Article  CAS  Google Scholar 

  72. Tripkovic V, Vegge T. J Phys Chem C, 2017, 121: 26785–26793

    Article  CAS  Google Scholar 

  73. Sun H, Wang M, Du X, Jiao Y, Liu S, Qian T, Yan Y, Liu C, Liao M, Zhang Q, Meng L, Gu L, Xiong J, Yan C. J Mater Chem A, 2019, 7: 20952–20957

    Article  CAS  Google Scholar 

  74. Toda T, Igarashi H, Uchida H, Watanabe M. J Electrochem Soc, 1999, 146: 3750–3756

    Article  CAS  Google Scholar 

  75. Li J, Alsudairi A, Ma ZF, Mukerjee S, Jia Q. J Am Chem Soc, 2017, 139: 1384–1387

    Article  CAS  PubMed  Google Scholar 

  76. Zhou WP, Yang X, Vukmirovic MB, Koel BE, Jiao J, Peng G, Mavrikakis M, Adzic RR. J Am Chem Soc, 2009, 131: 12755–12762

    Article  CAS  PubMed  Google Scholar 

  77. Matin MA, Lee J, Kim GW, Park HU, Cha BJ, Shastri S, Kim G, Kim YD, Kwon YU, Petkov V. Appl Catal B-Environ, 2020, 267: 118727

    Article  CAS  Google Scholar 

  78. Garlyyev B, Pohl MD, Čolić V, Liang Y, Butt FK, Holleitner A, Bandarenka AS. Electrochem Commun, 2018, 88: 10–14

    Article  CAS  Google Scholar 

  79. Shao Q, Wang P, Zhu T, Huang X. Acc Chem Res, 2019, 52: 3384–3396

    Article  CAS  PubMed  Google Scholar 

  80. Hyman MP, Medlin JW. J Phys Chem B, 2006, 110: 15338–15344

    Article  CAS  PubMed  Google Scholar 

  81. Wu J, Yang H. Acc Chem Res, 2013, 46: 1848–1857

    Article  CAS  PubMed  Google Scholar 

  82. Shao M, Peles A, Shoemaker K. Nano Lett, 2011, 11: 3714–3719

    Article  CAS  PubMed  Google Scholar 

  83. Yi S, Jiang H, Bao X, Zou S, Liao J, Zhang Z. J Electroanal Chem, 2019, 848: 113279

    Article  CAS  Google Scholar 

  84. Chen J, Lim B, Lee EP, Xia Y. Nano Today, 2009, 4: 81–95

    Article  CAS  Google Scholar 

  85. Deng C, He R, Shen W, Li M. Phys Chem Chem Phys, 2019, 21: 18589–18594

    Article  CAS  PubMed  Google Scholar 

  86. Li S, Yang Y, Huang S. Appl Surf Sci, 2017, 410: 291–298

    Article  CAS  Google Scholar 

  87. Kim H-, Lee IH, Cho J, Shin S, Ham HC, Kim JY, Lee H. ChemElectroChem, 2019, 6: 4757–4764

    Article  CAS  Google Scholar 

  88. Fang YH, Liu ZP. J Phys Chem C, 2011, 115: 17508–17515

    Article  CAS  Google Scholar 

  89. Li H, Sun G, Li N, Sun S, Su D, Xin Q. J Phys Chem C, 2007, 111: 5605–5617

    Article  CAS  Google Scholar 

  90. Duan Z, Wang G. Phys Chem Chem Phys, 2011, 13: 20178–20187

    Article  CAS  PubMed  Google Scholar 

  91. Nigam S, Majumder C. Phys Chem Chem Phys, 2017, 19: 19308–19315

    Article  CAS  PubMed  Google Scholar 

  92. Calle-Vallejo F, Tymoczko J, Colic V, Vu QH, Pohl MD, Morgenstern K, Loffreda D, Sautet P, Schuhmann W, Bandarenka AS. Science, 2015, 350: 185–189

    Article  CAS  PubMed  Google Scholar 

  93. Cheng H, Liu S, Hao Z, Wang J, Liu B, Liu G, Wu X, Chu W, Wu C, Xie Y. Chem Sci, 2019, 10: 5589–5595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu R, Tsiakaras P, Shen PK. Appl Catal B-Environ, 2019, 251: 49–56

    Article  CAS  Google Scholar 

  95. Huang X, Zhao Z, Cao L, Chen Y, Zhu E, Lin Z, Li M, Yan A, Zettl A, Wang YM, Duan X, Mueller T, Huang Y. Science, 2015, 348: 1230–1234

    Article  CAS  PubMed  Google Scholar 

  96. Zhang Q, He J, Guo R, Zhao Y, Zhang W, Zhang W, Pang SS, Ding Y. ACS Appl Mater Interfaces, 2018, 10: 39705–39712

    Article  CAS  PubMed  Google Scholar 

  97. Kaneko S, Myochi R, Takahashi S, Todoroki N, Wadayama T, Tanabe T. J Phys Chem Lett, 2017, 8: 5360–5365

    Article  CAS  PubMed  Google Scholar 

  98. Wang JX, Inada H, Wu L, Zhu Y, Choi YM, Liu P, Zhou WP, Adzic RR. J Am Chem Soc, 2009, 131: 17298–17302

    Article  CAS  PubMed  Google Scholar 

  99. Yang J, Lee JY, Zhang Q, Zhou W, Liu Z. J Electrochem Soc, 2008, 155: B776

    Article  CAS  Google Scholar 

  100. Chaves AS, Rondina GG, Piotrowski MJ, Da Silva JLF. Comput Mater Sci, 2015, 98: 278–286

    Article  CAS  Google Scholar 

  101. Yu Z, Zhang J, Liu Z, Ziegelbauer JM, Xin H, Dutta I, Muller DA, Wagner FT. J Phys Chem C, 2012, 116: 19877–19885

    Article  CAS  Google Scholar 

  102. Gracia-Espino E, Jia X, Wågberg T. J Phys Chem C, 2014, 118: 2804–2811

    Article  CAS  Google Scholar 

  103. Popov BN, Lee JW, Kriston A, Kim T. J Electrochem Soc, 2020, 167: 054512

    Article  CAS  Google Scholar 

  104. Guterman VE, Pakharev AY, Tabachkova NY. Appl Catal A-Gen, 2013, 453: 113–120

    Article  CAS  Google Scholar 

  105. Lang XY, Han GF, Xiao BB, Gu L, Yang ZZ, Wen Z, Zhu YF, Zhao M, Li JC, Jiang Q. Adv Funct Mater, 2015, 25: 230–237

    Article  CAS  Google Scholar 

  106. Huang H, Li K, Chen Z, Luo L, Gu Y, Zhang D, Ma C, Si R, Yang J, Peng Z, Zeng J. J Am Chem Soc, 2017, 139: 8152–8159

    Article  CAS  PubMed  Google Scholar 

  107. Chang F, Shan S, Petkov V, Skeete Z, Lu A, Ravid J, Wu J, Luo J, Yu G, Ren Y, Zhong CJ. J Am Chem Soc, 2016, 138: 12166–12175

    Article  CAS  PubMed  Google Scholar 

  108. Hyman MP, Medlin JW. J Phys Chem C, 2007, 111: 17052–17060

    Article  CAS  Google Scholar 

  109. Zhang YQ, Tao HB, Liu J, Sun YF, Chen J, Hua B, Thundat T, Luo JL. Nano Energy, 2017, 38: 392–400

    Article  CAS  Google Scholar 

  110. Kudo D, Kaneko S, Myochi R, Chida Y, Todoroki N, Tanabe T, Wadayama T. ACS Appl Energy Mater, 2019, 2: 4597–4601

    Article  CAS  Google Scholar 

  111. Zhou ZY, Kang X, Song Y, Chen S. J Phys Chem C, 2012, 116: 10592–10598

    Article  CAS  Google Scholar 

  112. Janssens TVW, Clausen BS, Hvolbæk B, Falsig H, Christensen CH, Bligaard T, Nørskov JK. Top Catal, 2007, 44: 15–26

    Article  CAS  Google Scholar 

  113. Li M, Zhao Z, Cheng T, Fortunelli A, Chen CY, Yu R, Zhang Q, Gu L, Merinov BV, Lin Z, Zhu E, Yu T, Jia Q, Guo J, Zhang L, Goddard III WA, Huang Y, Duan X. Science, 2016, 354: 1414–1419

    Article  CAS  PubMed  Google Scholar 

  114. Kelly KL, Coronado E, Zhao LL, Schatz GC. J Phys Chem B, 2003, 107: 668–677

    Article  CAS  Google Scholar 

  115. Boronat M, Leyva-Pérez A, Corma A. Acc Chem Res, 2014, 47: 834–844

    Article  CAS  PubMed  Google Scholar 

  116. Buceta D, Piñeiro Y, Vázquez-Vázquez C, Rivas J, López-Quintela M. Catalysts, 2014, 4: 356–374

    Article  CAS  Google Scholar 

  117. Liu J, Zhang H, Qiu M, Peng Z, Leung MKH, Lin WF, Xuan J. J Mater Chem A, 2020, 8: 2222–2245

    Article  CAS  Google Scholar 

  118. Jasinski R. Nature, 1964, 201: 1212–1213

    Article  CAS  Google Scholar 

  119. Baranton S, Coutanceau C, Roux C, Hahn F, Léger JM. J Electroanal Chem, 2005, 577: 223–234

    Article  CAS  Google Scholar 

  120. Gojković SL, Gupta S, Savinell RF. J Electroanal Chem, 1999, 462: 63–72

    Article  Google Scholar 

  121. Wan X, Liu X, Li Y, Yu R, Zheng L, Yan W, Wang H, Xu M, Shui J. Nat Catal, 2019, 2: 259–268

    Article  CAS  Google Scholar 

  122. Fu X, Li N, Ren B, Jiang G, Liu Y, Hassan FM, Su D, Zhu J, Yang L, Bai Z, Cano ZP, Yu A, Chen Z. Adv Energy Mater, 2019, 9: 1803737

    Article  CAS  Google Scholar 

  123. Wang L, Jia W, Liu X, Li J, Titirici MM. J Energy Chem, 2016, 25: 566–570

    Article  Google Scholar 

  124. Kiani M, Zhang J, Luo Y, Jiang C, Fan J, Wang G, Chen J, Wang R. J Energy Chem, 2018, 27: 1124–1139

    Article  Google Scholar 

  125. Workman MJ, Serov A, Tsui L, Atanassov P, Artyushkova K. ACS Energy Lett, 2017, 2: 1489–1493

    Article  CAS  Google Scholar 

  126. Wang Q, Zhou ZY, Lai YJ, You Y, Liu JG, Wu XL, Terefe E, Chen C, Song L, Rauf M, Tian N, Sun SG. J Am Chem Soc, 2014, 136: 10882–10885

    Article  CAS  PubMed  Google Scholar 

  127. Li J, Ghoshal S, Liang W, Sougrati MT, Jaouen F, Halevi B, McKinney S, McCool G, Ma C, Yuan X, Ma ZF, Mukerjee S, Jia Q. Energy Environ Sci, 2016, 9: 2418–2432

    Article  CAS  Google Scholar 

  128. Wang J, Huang Z, Liu W, Chang C, Tang H, Li Z, Chen W, Jia C, Yao T, Wei S, Wu Y, Li Y. J Am Chem Soc, 2017, 139: 17281–17284

    Article  CAS  PubMed  Google Scholar 

  129. Kramm UI, Abs-Wurmbach I, Herrmann-Geppert I, Radnik J, Fiechter S, Bogdanoff P. J Electrochem Soc, 2011, 158: B69

    Article  CAS  Google Scholar 

  130. Médard C, Lefèvre M, Dodelet JP, Jaouen F, Lindbergh G. Electrochim Acta, 2006, 51: 3202–3213

    Article  CAS  Google Scholar 

  131. Kabir S, Artyushkova K, Kiefer B, Atanassov P. Phys Chem Chem Phys, 2015, 17: 17785–17789

    Article  CAS  PubMed  Google Scholar 

  132. Zhang X, Mollamahale YB, Lyu D, Liang L, Yu F, Qing M, Du Y, Zhang X, Tian ZQ, Shen PK. J Catal, 2019, 372: 245–257

    Article  CAS  Google Scholar 

  133. Zhang N, Zhou T, Chen M, Feng H, Yuan R, Zhong C’, Yan W, Tian Y, Wu X, Chu W, Wu C, Xie Y. Energy Environ Sci, 2020, 13: 111–118

    Article  CAS  Google Scholar 

  134. Zitolo A, Goellner V, Armel V, Sougrati MT, Mineva T, Stievano L, Fonda E, Jaouen F. Nat Mater, 2015, 14: 937–942

    Article  CAS  PubMed  Google Scholar 

  135. Kramm UI, Herranz J, Larouche N, Arruda TM, Lefèvre M, Jaouen F, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Mukerjee S, Dodelet JP. Phys Chem Chem Phys, 2012, 14: 11673–11688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jia Q, Ramaswamy N, Hafiz H, Tylus U, Strickland K, Wu G, Barbiellini B, Bansil A, Holby EF, Zelenay P, Mukerjee S. ACS Nano, 2015, 9: 12496–12505

    Article  CAS  PubMed  Google Scholar 

  137. Zhang J, Zhao Y, Chen C, Huang YC, Dong CL, Chen CJ, Liu RS, Wang C, Yan K, Li Y, Wang G. J Am Chem Soc, 2019, 141: 20118–20126

    Article  CAS  PubMed  Google Scholar 

  138. Liberman I, Shimoni R, Ifraemov R, Rozenberg I, Singh C, Hod I. Am Chem Soc, 2020, 142: 1933–1940

    Article  CAS  Google Scholar 

  139. Shen H, Gracia-Espino E, Ma J, Zang K, Luo J, Wang L, Gao S, Mamat X, Hu G, Wagberg T, Guo S. Angew Chem Int Ed, 2017, 56: 13800–13804

    Article  CAS  Google Scholar 

  140. Chen X, Yu L, Wang S, Deng D, Bao X. Nano Energy, 2017, 32: 353–358

    Article  CAS  Google Scholar 

  141. Wang Y, Wu M, Wang K, Chen J, Yu T, Song S. Adv Sci, 2020, 7: 2000407

    Article  CAS  Google Scholar 

  142. Hentall PL, Lakeman JB, Mepsted GO, Adcock PL, Moore JM. Power Sources, 1999, 80: 235–241

    Article  CAS  Google Scholar 

  143. Scofield ME, Liu H, Wong SS. Chem Soc Rev, 2015, 44: 5836–5860

    Article  CAS  PubMed  Google Scholar 

  144. Moghaddam S, Pengwang E, Jiang YB, Garcia AR, Burnett DJ, Brinker CJ, Masel RI, Shannon MA. Nat Nanotech, 2010, 5: 230–236

    Article  CAS  Google Scholar 

  145. Li J, Chen M, Cullen DA, Hwang S, Wang M, Li B, Liu K, Karakalos S, Lucero M, Zhang H, Lei C, Xu H, Sterbinsky GE, Feng Z, Su D, More KL, Wang G, Wang Z, Wu G. Nat Catal, 2018, 1: 935–945

    Article  CAS  Google Scholar 

  146. Scholta J, Berg N, Wilde P, Jörissen L, Garche J. J Power Sources, 2004, 127: 206–212

    Article  CAS  Google Scholar 

  147. Zhu X, Sui PC, Djilali N. J Power Sources, 2008, 181: 101–115

    Article  CAS  Google Scholar 

  148. Wuttikid K, Shimpalee S, Weidner JW, Punyawudho K. Fuel Cells, 2017, 17: 643–651

    Article  CAS  Google Scholar 

  149. Su H, Xu Q, Chong J, Li H, Sita C, Pasupathi S. J Power Sources, 2017, 341: 302–308

    Article  CAS  Google Scholar 

  150. Encalada J, Savaram K, Travlou NA, Li WL, Li Q, Delgado-Sánchez C, Fierro V, Celzard A, He H, Bandosz TJ. ACS Catal, 2017, 7: 7466–7478

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2017YFA0206702), the National Natural Science Foundation of China (21925110, 21890751, 91745113), Fundamental Research Funds for the Central Universities (WK 2060190084), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000), and the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changzheng Wu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Gui, R., Liu, S. et al. Local structure engineering for active sites in fuel cell electrocatalysts. Sci. China Chem. 63, 1543–1556 (2020). https://doi.org/10.1007/s11426-020-9828-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9828-5

Keywords

Navigation