Skip to main content
Log in

Water-assisted electrochemical fabrication of Cu/Cu2O nanoparticles in protic ionic liquid and their catalytic activity in the synthesis of quinazolinones

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The present study reports a simple protocol involving Cu/Cu2O nanoparticles synthesis via electrochemical deposition process in 1-methylpiperidinium trifluoromethane sulphonate [HmPip][OTf] protic ionic liquid. The phase and morphology of the prepared nanoparticles were examined using different characterization techniques such as XRD, XPS, FEG-SEM, TEM, EDX, and FT-IR. A highly efficient, ligand-free method was developed to synthesize quinazolinones from substituted 2-halobenzoic acids with amidines via microwave-assisted Cu/Cu2O nano-catalyst in ethylene glycol as a green solvent. Up to five cycles Cu/Cu2O nanoparticles show good recyclability without loss in its activity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Sun S, Zhang X, Song X, Liang S, Wang L, Yang Z (2012) Cryst Eng Comm 14:3545–3553

    CAS  Google Scholar 

  2. Li H, Ni Y, Cai Y, Zhang L, Zhou J, Hong J, Wei X (2009) J Mater Chem 19:594–597

    CAS  Google Scholar 

  3. Luo Y, Li S, Ren Q, Liu J, Xing L, Wang Y, Yu Y, Jia Z, Li J (2007) Cryst Growth Des 7:87–92

    CAS  Google Scholar 

  4. Ai Z, Zhang L, Lee S, Ho W (2009) J Phys Chem C 113:20896–20902

    CAS  Google Scholar 

  5. Yang Z, Xu J, Zhang W, Liu A, Tang S (2007) J Solid State Chem 180:1390–1396

    CAS  Google Scholar 

  6. Wang W, Tu Y, Zhang P, Zhang G (2011) Cryst Eng Comm 13:1838–1842

    CAS  Google Scholar 

  7. Liu Q, Liu H, Liang Y, Xu Z, Yin G (2006) Mater Res Bull 41:697–702

    CAS  Google Scholar 

  8. Velev OD, Kaler EW (2000) Adv Mater 12:531–534

    CAS  Google Scholar 

  9. Lu A-H, Schüth F (2006) Adv Mater 18:1793–1805

    CAS  Google Scholar 

  10. Nicewarner-Pena SR (2001) Submicrometer Metallic Barcodes. Science 294:137–141

    CAS  PubMed  Google Scholar 

  11. Foss CA, Hornyak GL, Stockert JA, Martin CR (1994) J Phys Chem 98:2963–2971

    CAS  Google Scholar 

  12. Fu LJ, Gao J, Zhang T, Cao Q, Yang LC, Wu YP, Holze R, Wu HQ (2007) J Power Sour 174:1197–1200

    CAS  Google Scholar 

  13. Yu Q, Ma X, Lan Z, Wang M, Yu C (2009) J Phys Chem C 113:6969–6975

    CAS  Google Scholar 

  14. Wang D, Mo M, Yu D, Xu L, Li F, Qian Y (2003) Cryst Growth Des 3:717–720

    CAS  Google Scholar 

  15. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924–1925

    CAS  PubMed  Google Scholar 

  16. Li M, Schnablegger H, Mann S (1999) Nature 402:393–395

    CAS  Google Scholar 

  17. Filankembo A, Pileni MP (2000) J Phys Chem B 104:5865–5868

    CAS  Google Scholar 

  18. Jana NR, Gearheart L, Murphy CJ (2001) J Phys Chem B 105:4065–4067

    CAS  Google Scholar 

  19. Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) J Mater Chem 12:1765–1770

    CAS  Google Scholar 

  20. Jayatissa AH, Guo K, Jayasuriya AC (2009) Appl Surf Sci 255:9474–9479

    CAS  Google Scholar 

  21. Ng CHB, Fan WY (2006) J Phys Chem B 110:20801–20807

    CAS  PubMed  Google Scholar 

  22. Zhang J, Liu J, Peng Q, Wang X, Li Y (2006) Chem Mater 18:867–871

    CAS  Google Scholar 

  23. Musa A, Akomolafe T, Carter M (1998) Sol Energy Mater Sol Cells 51:305–316

    CAS  Google Scholar 

  24. Raut AB, Tiwari AR, Bhanage BM (2017) ChemCatChem 9:1292–1297

    CAS  Google Scholar 

  25. Park JC, Kim J, Kwon H, Song H (2009) Adv Mater 21:803–807

    CAS  Google Scholar 

  26. Hua Q, Cao T, Bao H, Jiang Z, Huang W (2013) ChemSusChem 6:1966–1972

    CAS  PubMed  Google Scholar 

  27. Hara M, Kondo T, Komoda M, Ikeda S, Kondo JN, Domen K, Hara M, Shinohara K, Tanaka A (1998). Chem Commun 357–358

  28. Poizot P, Laruelle S, Grugeon S, Dupont L (2000) J-M Tarascon Nat 407:496–499

    CAS  Google Scholar 

  29. Pang H, Gao F, Lu Q (2009). Chem Commun 1076–1078

  30. Liang X, Gao L, Yang S, Sun J (2009) Adv Mater 21:2068–2071

    CAS  Google Scholar 

  31. Jimenez-Cadena G, Comini E, Ferroni M, Sberveglieri G (2010) Mater Lett 64:469–471

    CAS  Google Scholar 

  32. Van Dat P, Viet NX (2019) Mater Sci Eng C 103:109758

    CAS  Google Scholar 

  33. Huang L, Peng F, Yu H, Wang H (2008) Mater Res Bull 43:3047–3053

    CAS  Google Scholar 

  34. Zhou S, Chen M, Lu Q, Hu J, Wang H, Li K, Li K, Zhang J, Zhu Z, Liu Q (2019) Mater Lett 247:15–18

    CAS  Google Scholar 

  35. Kuo C-H, Huang MH (2010) Nano Today 5:106–116

    CAS  Google Scholar 

  36. Teo JJ, Chang Y, Zeng HC (2006) Langmuir 22:7369–7377

    CAS  PubMed  Google Scholar 

  37. Eswar NK, Gupta R, Ramamurthy PC, Madras G (2018) Mol Catal 451:161–169

    CAS  Google Scholar 

  38. Yi-BoDu C-G, Zhang L, Ruan M, Wen X-J, Zhang X-G, Zeng G-M (2017) Mol Catal 436:100–110

    Google Scholar 

  39. Zhou B, Wang H, Liu Z, Yang Y, Huang X, Lü Z, Sui Y, Su W (2011) Mater Chem Phys 126:847–852

    CAS  Google Scholar 

  40. Salavati-Niasari M, Davar F (2009) Mater Lett 63:441–443

    CAS  Google Scholar 

  41. Prechtl MHG (ed) (2016) Nanocatalysis in Ionic Liquids. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany

    Google Scholar 

  42. García S, García J, Larriba M, Torrecilla JS, Rodríguez F (2011) J Chem Eng Data 56:3188–3193

    Google Scholar 

  43. Atkin R, Warr GG (2007) J Phys Chem C. 111:5162–5168

    CAS  Google Scholar 

  44. Hayes R, Warr GG, Atkin R (2010) Phys Chem Chem Phys 12:1709–1723

    CAS  PubMed  Google Scholar 

  45. Bhujbal AV, Rout A, Venaktesan KA, Bhanage BM (2020) ChemistrySelect 5:3694–3699

    CAS  Google Scholar 

  46. Sanchez-Cupido L, Pringle JM, Siriwardana AL, Unzurrunzaga A, Hilder M, Forsyth M, Pozo-Gonzalo C (2019) J Phys Chem Lett 10:289–294

    CAS  PubMed  Google Scholar 

  47. Wang P, Roberts RC, Ngan AHW (2016) Sci Rep 6:27423

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Connolly DJ, Cusack D, O’Sullivan TP, Guiry PJ (2005) Tetrahedron 61:10153–10202

    CAS  Google Scholar 

  49. Hano Y, Ma Z, Nomura T, Luotonin A (2005) Heterocycles 65:2203

    Google Scholar 

  50. Witt A, Bergman J (2003) Curr Org Chem 7:659–677

    CAS  Google Scholar 

  51. Mhaske SB, Argade NP (2006) Tetrahedron 62:9787–9826

    CAS  Google Scholar 

  52. Lindley J (1984) Tetrahedron 40:1433–1456

    CAS  Google Scholar 

  53. Cai Q, Zou B, Ma D (2006) Angew Chem 118:1298–1279

    Google Scholar 

  54. Liu X, Fu H, Jiang Y, Zhao Y (2009) Angew Chem 48:348–351

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhalchandra M. Bhanage.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1632 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhujbal, A.V., Raut, A.B. & Bhanage, B.M. Water-assisted electrochemical fabrication of Cu/Cu2O nanoparticles in protic ionic liquid and their catalytic activity in the synthesis of quinazolinones. Reac Kinet Mech Cat 131, 905–918 (2020). https://doi.org/10.1007/s11144-020-01882-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01882-w

Keywords

Navigation