Skip to main content

Advertisement

Log in

What do we need to Probe Upper Ocean Stratification Remotely?

  • Published:
Radiophysics and Quantum Electronics Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We consider whether it is possible in principle to retrieve the key parameters of the mixed layer in the upper ocean (its thickness, bulk eddy viscosity and the pycnocline stratification below) using a theoretical model, which assumes the surface velocity and wind stress to be known from observations. To this end we examine the dynamics of the Ekman current in the novel two-layer model of the upper ocean made of two layers with greatly differing constant eddy viscosities. The presence of stratification manifests itself through suppression of turbulence and, hence, in much smaller value of the eddy viscosity compared to the bulk eddy viscosity ve1 in the mixed layer. Within this two-layer model the general solution in terms of Green’s function has been derived and analyzed. It was found that a spectral component of frequency ω of the Ekman current on the surface “feels” the presence of the stratified layer when the mixed layer depth d is less then or comparable to the Ekman scale \( \sqrt{2{v}_{\mathrm{e}1}/f+\omega } \), where f is the Coriolis parameter. Thus, under conditions of strong wind resulting in large eddy viscosity ve1, the depth of the mixed layer could be (in principle) inferred from the observations of wind and surface velocity. We conclude by stating that to retrieve the mixed layer parameters from the wind and surface velocity data, the theoretical model has to be extended by taking into account the effects of the Stokes drift due to surface waves and the possibility of intense mixing at the bottom of the mixed layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. O. M. Phillips, The Dynamics of the Upper Ocean, Cambridge Univ. Press, Cambridge (1977).

    Google Scholar 

  2. A. Soloviev and R. Lucas, The Near-Surface Layer of the Ocean, Springer, Berlin (2006).

    Google Scholar 

  3. K. A. Emanuel, J. Atmos. Sci., 45, No. 7, 1143–1155(1988). https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    Article  ADS  Google Scholar 

  4. L. R. Schade and K.A.Emanuel, J. Atmos. Sci., 56, No. 4, 642–651 (1999). https://doi.org/10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    Article  ADS  Google Scholar 

  5. G. R. Sutyrin and A. P. Khain, Izv. Atmos. Ocean. Phys., 20, 697–703 (1984).

    Google Scholar 

  6. B. Chapron, F. Collard, and F. Ardhuin, J. Geophys. Res., 110, 2005110 (2005). https://doi.org/10.1029/2004JC002809.

    Article  Google Scholar 

  7. D. B. Chelton, M. G. Schlax, R.M. Samelson, et al., Prog. Oceanogr ., 173, 256–350 (2019). https://doi.org/10.1016/j.pocean.2018.10.012.

    Article  ADS  Google Scholar 

  8. V. I. Shrira and P. Forget, J. Phys. Oceanogr., 45, 2660–2678 (2017). https://doi.org/10.1175/JPO-D-14-0247.1.

    Article  ADS  Google Scholar 

  9. V. Zervakis, Z. Kokkini, and E. Potiris, Cont. Shelf Res., 149, 4–16 (2017). https://doi.org/10.1016/j.csr.2016.07.008i.

    Article  ADS  Google Scholar 

  10. J. F. Price, R. A. Weller, and R. Pinkel, J. Geophys. Res. Oceans, 91, No. C7, 8411–8427 (1986). https://doi.org/10.1029/JC091iC07p08411.

    Article  ADS  Google Scholar 

  11. J.F. Price and M.A. Sundermeyer, J. Geophys. Res. Oceans, 104, No. C9, 20467–20494 (1999). https://doi.org/10.1029/1999JC900164.

    Article  ADS  Google Scholar 

  12. E. A. D’Asaro and G.T. Dairiki, J. Phys. Oceanogr., 27, No. 9, 2009-2022 (1997). https://doi.org/10.1175/1520-0485(1997)027<2009:TIMIAW>2.0.CO;2.

    Article  ADS  Google Scholar 

  13. R. A. Weller and J. F. Price, Deep-Sea Res. Part A, Oceanogr. Res. Papers, 35, No. 5, 711–747 (1988). https://doi.org/10.1016/0198-0149(88)90027-1.

    Article  ADS  Google Scholar 

  14. J.C. McWilliams, P. P. Sullivan, and C. H. Moeng, J. Fluid Mech., 334, 1–30 (1997). https://doi.org/10.1017/S0022112096004375.

    Article  ADS  MathSciNet  Google Scholar 

  15. D. M. Lewis and S.E. Belcher, Dynam. Atmos. Oceans, 37, 313–351 (2004). https://doi.org/10.1016/j.dynatmoce.2003.11.001.

    Article  ADS  Google Scholar 

  16. S. Elipot and S.T.Gille, Ocean Sci ., 5, 115–139 (2009). https://doi.org/10.5194/os-5-115-2009.

    Article  ADS  Google Scholar 

  17. N.E. Huang, J. Fluid Mech., 91, No. 1, 191–208 (1979). https://doi.org/10.1017/S0022112079000112.

    Article  ADS  Google Scholar 

  18. V. W. Ekman, Arch. Math. Astron. Phys., 2, 1–52 (1905).

    ADS  Google Scholar 

  19. V. N. Kudryavtsev and A. V. Soloviev, J. Phys. Oceanogr., 20, 61717628 (1990). https://doi.org/10.1175/1520-0485(1990)020.

    Article  Google Scholar 

  20. G. N. Coleman, J. H. Ferziger, and P. R. Spalart, J. Fluid Mech., 213, 313–348 (1990). https://doi.org/10.1017/S0022112090002348.

    Article  ADS  Google Scholar 

  21. P. Broche, P. Forget, J.C. De Maistre, et al., Radio Sci., 22, No. 1, 69–75 (1987). https://doi.org/10.1029/RS022i001p00069.

    Article  ADS  Google Scholar 

  22. J.D. Paduan and H. C. Graber, Oceanography, 10, No. 2, 36–39 (1997). https://doi.org/10.5670/oceanog.1997.18.

    Article  Google Scholar 

  23. L.R.Wyatt, J. Atmos. Oceanic Technol., 17, No. 12, 1651–1666 (2000). https://doi.org/10.1175/1520-0426(2000)017<1651:LTTIOH>2.0.CO;2.

    Article  ADS  Google Scholar 

  24. V. I. Shrira, D. V. Ivonin, P. Broche, and J.C. de Maistre, Geophys. Res. Lett., 28, No. 20, 3955–3958 (2001). https://doi.org/10.1029/2001GL013387.

    Article  ADS  Google Scholar 

  25. R. H. Stewart and J. W. Joy, Deep-Sea Res., 21, No. 12, 1039–1049 (1974). https://doi.org/10.1016/0011-7471(74)90066-7.

    Article  ADS  Google Scholar 

  26. V. Kudryavtsev, A. Monzikova, C. Combot, et al., J. Geophys. Res. Oceans, 124, No. C5, 3462–3485 (2019). https://doi.org/10.1029/2018JC014747.

    Article  ADS  Google Scholar 

  27. V. I. Shrira and R. B. Almelah, J. Fluid Mech., 887, A24 (2020). https://doi.org/10.1017/jfm.2019.1059.

    Article  ADS  Google Scholar 

  28. P.P. Sullivan and J.C.McWilliams, Annual Rev. Fluid Mech., 42, 19–42 (2010). https://doi.org/10.1146/annurev-fluid-121108-145541.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, No. 1, pp. 1–22, January 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrira, V.I., Almelah, R.B. What do we need to Probe Upper Ocean Stratification Remotely?. Radiophys Quantum El 63, 1–20 (2020). https://doi.org/10.1007/s11141-020-10030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-020-10030-2

Navigation