Skip to main content
Log in

Interaction of Acoustic and Electromagnetic Waves in Nondestructive Evaluation and Medical Applications

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Nonlinear acoustic nondestructive evaluation (NA NDE) methods have a higher sensitivity for defect detection than standard methods. These methods use various kinds of acoustic wave interactions. In this paper, we suggest augmenting the acoustic framework and use the interaction between acoustic and electromagnetic waves. A brief review of NA NDE and medical nonlinear acoustic imaging methods is presented. Medical methods based on electromagnetic wave modulation by an acoustic radiation force are discussed where improvements using ultrasound contrast agents are suggested. The estimation of the modulation of a radar signal by a crack vibration were made based on standard static measurements. The effects of modulation of an acoustic wave by an electromagnetic field are briefly considered for the method of crack detection in metal materials. The effects considered in this paper may be used in the new methods of NDE and medical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Nazarov, LA. Ostrovsky, I. A. Soustova, and A. M. Sutin, Phys. Earth Planet. Int., 50, No. 1, 65–73 (1988). https://doi.org/10.1016/0031-9201(88)90094-5.

    Article  ADS  Google Scholar 

  2. O. Buck, W. L. Morris, and J. N. Richardson, Appl. Phys. Lett., 33, No. 5, 371–373 (1978). https://doi.org/10.1063/1.90399.

    Article  ADS  Google Scholar 

  3. W. L. Morris, O. Buck, and R. V. Inman, J. Appl. Phys., 50, No. 11, 6737–6741 (1979). https://doi.org/10.1063/1.325917.

    Article  ADS  Google Scholar 

  4. D. Roach, in: Commercial Aircraft Composite Repair Committee Meeting, 12–16 November 2007, Wichita, USA, p. 12.

  5. L. Hoff, Acoustic Characterization of Contrast Agents for Medical Ultrasound Imaging, Springer Science & Business Media, Berlin (2001).

    Book  Google Scholar 

  6. J. M. Correas, L. Bridal, A. Lesavre, et al., Eur. Radiol., 11, No. 8, 1316–1328 (2001). https://doi.org/10.1007/s003300100940.

    Article  Google Scholar 

  7. D. Cosgrove, Eur. J. Radiol., 60, No. 3, 324–330 (2006). https://doi.org/10.1016/j.ejrad.2006.06.022.

    Article  Google Scholar 

  8. O. V. Rudenko, Phys.Usp., 50, No. 4, 359–367 (2007). https://doi.org/10.1070/PU2007v050n04ABEH006236.

    Article  ADS  Google Scholar 

  9. P. B. Nagy and L. Adler, Rev. Progr. Quant. Nondestr. Eval., 11B, 2025–2032 (1992).

    Google Scholar 

  10. A. S. Korotkov, M. M. Slavinskij, and A. Sutin, Acoust. Phys., 40, No. 1, 71–74 (1994).

    ADS  Google Scholar 

  11. A. A. Korotkov and A. M. Sutin, Acoust. Lett., 18, No. 4, 59–62 (1994).

    Google Scholar 

  12. R. A. Guyer and P. A. Johnson, Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete, John Wiley & Sons, Weinheim (2009).

  13. A. M. Sutin and V. E. Nazarov, Radiophys. Quantum Electron., 38, Nos. 3–4, 109–120 (1995). https://doi.org/10.1007/BF01037881.

    Article  ADS  Google Scholar 

  14. L. A. Ostrovsky and P. A. Johnson, Rivista del Nuovo Cimento della Societa Italiana di Fisica, 24, No. 7, 1–46 (2001).

  15. P. A. Johnson and A. Sutin, AIP Conf. Proc., 760, No. 1, 377–384 (2005). https://doi.org/10.1063/1.1916701.

    Article  ADS  Google Scholar 

  16. A. M. Sutin and P. A. Johnson, AIP Conf. Proc., 760, No. 1, 385–329 (2005). https://doi.org/10.1063/1.1916702.

    Article  ADS  Google Scholar 

  17. Y. Zheng, R. G. Maev, and I. Solodov, Canadian J. Phys., 77, No. 12, 927–967 (2000). https://doi.org/10.1139/p99-059.

    Article  ADS  Google Scholar 

  18. D. Broda, W. J. Staszewski, A. Martowicz, et al., J. Sound Vibr., 333, No. 4, 1097–1118 (2014). https://doi.org/10.1016/j.jsv.2013.09.033.

    Article  ADS  Google Scholar 

  19. O. V. Rudenko, Phys. Usp., 49, No. 1, 69–87 (2006). https://doi.org/10.1070/PU2006v049n01ABEH005876.

    Article  ADS  MathSciNet  Google Scholar 

  20. S. N. Gurbatov, O. V. Rudenko, and A. I. Saichev, in: Waves and Structures in Nonlinear Nondispersive Media, Springer, Berlin, Heidelberg (2011), p. 271–307. https://doi.org/10.1007/978-3-642-23617-4_8.

    Book  MATH  Google Scholar 

  21. I. Solodov, in: Proc. NDT in Progress, 5th Int. Workshop of NDT Experts, 12–14 October 2009, Prague, 8633.

  22. V. Y. Zaitsev, V. E. Nazarov, and V. I. Talanov, Phys. Usp., 49, No. 1, 89–94 (2006). https://doi.org/10.1070/PU2006v049n01ABEH005877.

    Article  ADS  Google Scholar 

  23. V. Y. Zaitsev, MRS Bull., 44, No. 5, 350–360 (2019), https://doi.org/10.1557/mrs.2019.109.

    Article  Google Scholar 

  24. M. Scalerandi, A. S. Gliozzi, C. L. E. Bruno, et al., Appl. Phys. Lett., 92, No. 10, 101912 (2008). https://doi.org/10.1063/1.2890031.

    Article  ADS  Google Scholar 

  25. K. A. Van Den Abeele, P. A. Johnson, ans A. Sutin, J. Res. Nondestr. Eval., 12, No. 1, 17–30 (2000). https://doi.org/10.1080/09349840009409646.

  26. A. V. Lebedev, L. A. Ostrovsky, and A. M. Sutin, Acoust. Phys., 51, No. S1, S88–S101 (2005). https://doi.org/10.1134/1.2133957.

    Article  ADS  Google Scholar 

  27. A. S. Nowick, Progr. Metal Phys., 4, 1–70 (1953).

    Article  ADS  Google Scholar 

  28. V. E. Nazarov and S. B. Kiyashko, Radiophys. Quantum Electr., 56, No. 10, 686–696 (2014). https://doi.org/10.1007/s11141-014-9473-1.

    Article  ADS  Google Scholar 

  29. A. M. Sutin and D. M. Donskoy, SPIE Proc. 3397, 226–238 (1998). https://doi.org/10.1117/12.305057.

    Article  ADS  Google Scholar 

  30. P. A. Johnson, A. Sutin, and K. E. A. Van Den Abeele, “Application of nonlinear wave modulation spectroscopy to discern material damage: techn. rep. LA-UR-99-753,” Los Alamos National Lab., Los Alamos (1999).

  31. V. Y. Zaitsev, V. Gusev, and B. Castagnede, Ultrasonics, 40, Nos. 1–8, 627–631 (2002). https://doi.org/10.1016/S0041-624X(02)00187-7.

    Article  Google Scholar 

  32. P. Johnson and A. Sutin, J. Acoust. Soc. Am., 117, No. 1, 124–130 (2005). https://doi.org/10.1121/1.1823351.

    Article  ADS  Google Scholar 

  33. K. J. Leśnicki, K. E. Kurtis, and L. J. Jacobs, NDT&E Int., 44, No. 8, 721–727 (2011). https://doi.org/10.1016/j.ndteint.2011.07.010.

    Article  Google Scholar 

  34. A. J. Hillis, S. A. Neild, B. W. Drinkwater, and P. D. Wilcox, in: Proc. Roy. Soc. Lond. A, 462, No. 2069, 1515-1530 (2006). https://doi.org/10.1098/rspa.2005.1620.

    Article  ADS  Google Scholar 

  35. J. Chomas, P. Dayton, D. May, and K. Ferrara, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 49, No. 7, 883–892 (2002). https://doi.org/10.1109/TUFFC.2002.1020158.

    Article  Google Scholar 

  36. I. Solodov, J. Wacker, K. Pfleiderer, and G. Busse, Appl. Phys. Lett., 84, No. 26, 5386–5388 (2004). https://doi.org/10.1063/1.1767283.

    Article  ADS  Google Scholar 

  37. J. Cantrell and K. Salama, Int. Mater. Rev., 36, No. 1, 125–145 (1991). https://doi.org/10.1179/imr.1991.36.1.125.

    Article  Google Scholar 

  38. K. V. Kurashkin, Acoust. Phys., 65, No. 3, 316–321 (2019). https://doi.org/10.1134/S1063771019030047.

    Article  ADS  Google Scholar 

  39. G. Zumpano and M. Meo, Int. J. Sol. Struct., 44, Nos. 11–12, 3666–3684 (2007). https://doi.org/10.1016/j.ijsolstr.2006.10.010.

    Article  Google Scholar 

  40. T. J. Ulrich, P. A. Johnson, and A. Sutin, J. Acoust. Soc. Am., 119, No. 3, 1514–1518 (2006). https://doi.org/10.1121/1.2168413.

    Article  ADS  Google Scholar 

  41. I. Solodov, J. Nondestr. Eval., 33, No. 2, 252–262 (2014). https://doi.org/10.1007/s10921-014-0229-9.

    Article  Google Scholar 

  42. I. Solodov, J. Bai, S. Bekgulyan, and G. Busse, Appl. Phys. Lett., 99, No. 21, 211911 (2011). https://doi.org/10.1063/1.3663872.

    Article  ADS  Google Scholar 

  43. P. N. Burns, D. H. Simpson, and M. A. Averkiou, Ultrasound Med. Biol., 26, S19–S22 (2000). https://doi.org/10.1016/S0301-5629(01)00463-X.

    Article  Google Scholar 

  44. F. Tranquart, N. Grenier, V. Eder, and L. Pourcelot, Ultrasound Med. Biol., 25, No. 6, 889–894 (1999). https://doi.org/10.1016/S0301-5629(99)00060-5.

    Article  Google Scholar 

  45. P. Monk, in: A. S. Fokas, D. Kaup, A.C.Newell, and V.E. Zakharov (eds.) Nonlinear Processes in Physics, Springer, Berlin (1993), p. 334–338.

  46. H. R. Maurer, S. Schubert, F. Bächle, et al., in: Proc. 14th Int. Symp. Nondestructive Testing of Wood, May 2005, Eberswalde, p. 337–350.

  47. V. A. Burov, I. E. Gurinovich, O. V. Rudenko, and E. Y. Tagunov, in: P. Tortoli and L. Masotti (eds.), Acoustical Imaging, Springer, Boston (1996), p. 125–130. https://doi.org/10.1007/978-1-4419-8772-3_20.

  48. V. A. Burov, A. A. Shmelev, and D. I. Zotov, Acoust. Phys., 59, No. 1, 27–44 (2013). https://doi.org/10.1134/S1063771013010065.

    Article  ADS  Google Scholar 

  49. V. V. Kazakov, A. Sutin, and P. A. Johnson, Appl. Phys. Lett., 81, No. 4, 646–648 (2002). https://doi.org/10.1063/1.1495081.

    Article  ADS  Google Scholar 

  50. W. Li and Y. Cho, Ultrasonics, 65, 87–95 (2016). https://doi.org/10.1016/j.ultras.2015.10.016.

    Article  Google Scholar 

  51. F. Semperlotti and S. C. Conlon, J. Acoust. Soc. Am., 127, No. 2, EL48–EL53 (2010). https://doi.org/10.1121/1.3290175.

    Article  ADS  Google Scholar 

  52. A. Lamberti and F. Semperlotti, Smart Mater. Struct., 22, No. 12, 125006 (2013). https://doi.org/10.1088/0964-1726/22/12/125006.

    Article  ADS  Google Scholar 

  53. E. L. Carstensen, W. K. Law, N. D. McKay, and T. G. Muir, Ultrasound Med. Biol., 6, No. 4, 359-368 (1980). https://doi.org/10.1016/0301-5629(80)90005-8.

    Article  Google Scholar 

  54. O. V. Rudenko and A. P. Sarvazyan, Crit. Rev. Biomed. Eng., No. 3, 6–19 (2000).

  55. J. M. Escoffre and A. Bouakaz, eds., Therapeutic Ultrasound, Springer Int. Publ., New York (2015). https://doi.org/10.1007/978-3-319-22536-4.

    Book  Google Scholar 

  56. L. A. Ostrovsky and A. M. Sutin, Sov. Phys. Dokl., 20, No. 4, 275–277 (1975).

    ADS  Google Scholar 

  57. A. M. Sutin, Sov. Phys. Acoust., 24, No. 4, 334–339 (1978).

    Google Scholar 

  58. K. A. Naugolnykh and L. A. Ostrovsky, Nonlinear Wave Processes in Acoustics, Cambridge University Press, New York (1998).

    MATH  Google Scholar 

  59. N. S. Bakhvalov, Y. S. Zhileikin, E. A. Zabolotskaya, and R. V. Khokhlov, Sov. Phys. Acoust., 24, No. 1, 10–15 (1978).

    Google Scholar 

  60. O. V. Bessonova, V. A. Khokhlova, M. R. Bailey, et al., Acoust. Phys., 55, Nos. 4–5, 463-473 (2009). https://doi.org/10.1134/S1063771009040034.

    Article  ADS  Google Scholar 

  61. P. B. Rosnitskiy, P. V. Yuldashev, O. A. Sapozhnikov, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64, No. 2, 374–390 (2016). https://doi.org/10.1109/TUFFC.2016.2619913.

    Article  Google Scholar 

  62. B. Schrope, V. Newhouse, and V. Uhlendorf, J. Acoust. Soc. Am., 90, No. 4, 2358 (1991). https://doi.org/10.1016/0161-7346(92)90004-F.

    Article  ADS  Google Scholar 

  63. L. Ostrovsky and A. Sutin, in: Abst. 12th Int. Acoust. Congr. Assoc. Symp. Underwater Acoust., 16–18 July 1986, Halifax, p. 39.

  64. M. Muller, A. Sutin, R. Guyer, et al., J. Acoust. Soc. Am., 218, No. 6, 3946–3952 (2005). https://doi.org/10.1121/1.2126917.

    Article  ADS  Google Scholar 

  65. G. Renaud, S. Callé, J. P. Remenieras, and M. Defontaine, Int. J. Nonlin. Mech., 43, No. 3, 194–200 (2008). https://doi.org/10.1016/j.ijnonlinmec.2007.12.007.

    Article  Google Scholar 

  66. K. Zacharias, E. Balabanidou, T. Hatzokos, et al., J. Biomech., 42, No. 5, 581–586 (2009). https://doi.org/10.1016/j.jbiomech.2008.12.018.

    Article  Google Scholar 

  67. F. Mustapha, in: Innovation in Smart Materials and Structural Health Monitoring for Composite Applications, Materials Research Forum, Millersville, 2017).

  68. V. M. Karbhari and F. Ansari, eds., Structural Health Monitoring of Civil Infrastructure Systems, Elsevier, Amsterdam (2009). 552 p.

    Google Scholar 

  69. C. R. Farrar and K. Worden, Structural Health Monitoring: A Machine Learning Perspective, John Wiley & Sons, Hoboken (2012).

    Book  Google Scholar 

  70. R. Yan, X. Chen, and S. C. Mukhopadhyay, Structural Health Monitoring, Springer, Berlin (2017).

    Book  Google Scholar 

  71. M. Mitra and S. Gopalakrishnan, Smart Mater. Struct., 25, No. 5, 053001 (2016). https://doi.org/10.1088/0964-1726/25/5/053001.

    Article  ADS  Google Scholar 

  72. E. N. Chatzi and C. Papadimitriou, eds., Identification Methods for Structural Health Monitoring, Springer International Publishing, New York (2016).

    Google Scholar 

  73. F. G. Yuan, ed., Structural Health Monitoring (SHM) in Aerospace Structures, Woodhead Publishing, Sawston (2016).

    Google Scholar 

  74. W. L. Richards, E. I. Madaras, W. H. Prosser, and G. Studor, in: 9th Int. Workshop Structural Health Monitoring, 10 September 2013, Stanford, 20140011091.

  75. K. Worden, C. R. Farrar, J. Haywood, and M. Todd, Struct. Control. Health Monit., 15, No. 4, 540–567 (2008). https://doi.org/10.1002/stc.215.

    Article  Google Scholar 

  76. A. J. Hillis and C. R. P. Courtney, J. Sound Vib., 330, No. 6, 1141–1152 (2011). https://doi.org/10.1016/j.jsv.2010.09.019.

    Article  ADS  Google Scholar 

  77. J. P. Jiao, B. W. Drinkwater, S. A. Neild, and P. D. Wilcox, Smart Mater. Struct., 18, No. 6, 065006 (2009). https://doi.org/10.1088/0964-1726/18/6/065006.

    Article  ADS  Google Scholar 

  78. A. Zagrai, D. Doyle, and B. Arritt, Health Monit. Struct. Biol. Syst., 6935, 693505 (2008). https://doi.org/10.1117/12.775766.

    Article  Google Scholar 

  79. K. Nagy, D. A. Dousis, and R. D, Finch, J. Eng. Ind., 100, No. 4, 459–465 (1978). https://doi.org/10.1115/1.3439461.

    Article  Google Scholar 

  80. V. L. Markine, A. P. de Man, and C. Esveld, in: in: P. Ståhle, and K. G. Sundin (Eds.) IUTAM Symposium on Field Analyses for Determination of Material Parameters—Experimental and Numerical Aspects, Springer, New York (2003), p. 27–36. https://doi.org/10.1007/978-94-010-0109-0.

  81. N. Gucunski, M. Yan, Z. Wang, et al., J. Infrastruct. Syst., 18, No. 1, 12–24 (2011). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000060.

    Article  Google Scholar 

  82. S. A. Suarez and R. F. Gibson, J. Test. Eval., 15, No. 2, 114–121 (1987). https://doi.org/10.1520/JTE10991J.

    Article  Google Scholar 

  83. Aircraft Inspection and Repair. Federal Aviation Administration, Skyhorse Publishing Inc., New York (2013).

  84. A. M. Sutin, R. A. Guyer, and R. A. Johnson, J. Acoust. Soc. Am., 107, No. 5, 2846–2846 (2000). https://doi.org/10.1121/1.429198.

    Article  ADS  Google Scholar 

  85. Y. Kin, C. Zhou, B. Parsons, et al., in: AISTech—Iron and Steel Technology Conf. Proc., December 2004, Vol. 2, p. 895–901.

  86. K. Van Den Abeele, P. Y. Bas, B. Van Damme, and T. Katkowski, J. Acoust. Soc. Am., 126, No. 3, 963–972 (2009). https://doi.org/10.1121/1.3184583.

    Article  ADS  Google Scholar 

  87. X. Zhu and H. Hao, Int. J. Struct. Stab. Dyn., 9, No. 4, 687–709 (2009). https://doi.org/10.1142/S0219455409003247.

    Article  Google Scholar 

  88. S. A. Neild, “Using non-linear vibration techniques to detect damage in concrete bridges,” Ph.D. Thesis, University of Bristol (2001).

    Google Scholar 

  89. C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, IEEE Trans. Microw. Theory Tech., 61, No. 5, 2046–2060 (2013). https://doi.org/10.1109/TMTT.2013.2256924.

    Article  ADS  Google Scholar 

  90. C. Li, Z. Peng, T. Y. Huang, et al., IEEE Trans. Microw. Theory Tech., 65, No. 5, 1692–1706 (2017). https://doi.org/10.1109/TMTT.2017.2650911.

    Article  ADS  Google Scholar 

  91. J. Moll, K. Bechtel, B. Hils, and V. Krozer, in: 7th European Workshop on Structural Health Monitoring, 8–11 July, 2014, Nantes, p. 1802–1808.

  92. J. Moll and V. Krozer, in: 8th European Workshop on Structural Health Monitoring, 5–8 July 2016, Bilbao, p. 1–6.

  93. W. R. Scott Jr., G. D. Larson, and J. S. Martin, SPIE Proc., 4038, 667–678 (2000). https://doi.org/10.1117/12.396295.

    Article  ADS  Google Scholar 

  94. L. Qiu, T. Jin, B. Lu, and Z. Zhou, IET Int. Radar Conf., 14–16 October 2015, Hangzhou, 1115. https://doi.org/10.1049/cp.2015.1115.

  95. V. M. Lubecke, O. Boric-Lubecke, A. Host-Madsen, and A. E. Fathy, in: 2007 IEEE/MTTS International Microwave Symposium, 3–8 June 2007, Honolulu, p. 769–772. https://doi.org/10.1109/MWSYM.2007.380053.

  96. L. Crocco and V. Ferrara, in: Int. Conf. Collaboration Technologies and Systems, 19–23 May 2014, Minneapolis, p. 535–540. https://doi.org/10.1109/CTS.2014.6867620.

  97. C. B. Top, A. K. Tafreshi, and N. G. Gençer, IEEE Trans. Microw. Theory Tech., 64, No. 11, 3974–3986 (2016). https://doi.org/10.1109/TMTT.2016.2607713.

    Article  ADS  Google Scholar 

  98. A. K. Tafreshi, C. B. Top, and N. G. Gençer, Phys. Med. Biol., 62, No. 12, 4852–4869 (2017). https://doi.org/10.1088/1361-6560/aa5de1.

    Article  Google Scholar 

  99. M. Fatemi and J. F. Greenleaf, Proc. Nat. Acad. Sci., 96, No. 12, 6603–6608 (1999). https://doi.org/10.1073/pnas.96.12.6603.

    Article  ADS  Google Scholar 

  100. K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, J. Acoust. Soc. Am., 110, No. 1, 625–634 (2001). https://doi.org/10.1121/1.1378344.

    Article  ADS  Google Scholar 

  101. E. E. Konofagou and K. Hynynen, Ultrasound Med. Biol., 29, No. 10, 1405–1413 (2003). https://doi.org/10.1016/S0301-5629(03)00953-0.

    Article  Google Scholar 

  102. H. Ammari, E. Bossy, J. Garnier, and L. Seppecher, SIAM J. Appl. Math., 72, No. 5, 1592–1617 (2012). https://doi.org/10.1137/120863654.

    Article  MathSciNet  Google Scholar 

  103. L. Ostrovsky, A. Sutin, Y. Il’inskii, et al., J. Acoust. Soc. Am., 121, No. 3, 1324–1331 (2007). https://doi.org/10.1121/1.2532113.

    Article  ADS  Google Scholar 

  104. L. A. Ostrovsky, J. Acoust. Soc. Am., 124, No. 3, 1404–1407 (2008). https://doi.org/10.1121/1.2956473.

    Article  ADS  Google Scholar 

  105. E. A. Zabolotskaya and S. I. Soluyan, Sov. Phys. Acoust., 18, No. 3, 396–398 (1973).

    Google Scholar 

  106. M. X. Tang and R. J. Eckersley, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, No. 12, 2406–2415 (2006). https://doi.org/10.1109/TUFFC.2006.189.

    Article  Google Scholar 

  107. L. A. Ostrovsky, A. M. Sutin, I. A. Soustova, et al., J. Acoust. Soc. Am., 113, No. 2, 741–749 (2003). https://doi.org/10.1121/1.1526497.

    Article  ADS  Google Scholar 

  108. Z. Klusek, S. V. Karpov, A. L. Matveev, et al., Acoust. Phys., 42, No. 4, 464–470 (1996).

    ADS  Google Scholar 

  109. Y. Chen and P. Kosmas, IEEE. Trans. Biomed. Eng., 59, No. 3, 766–776 (2011). https://doi.org/10.1109/TBME.2011.2179035.

    Article  Google Scholar 

  110. F. Gao, B. D. Van Veen, and S. C. Hagness, in: IEEE Antennas Propag. Soc. Int. Symp., 7–13 July 2013, Orlando, p. 2030–2031 (2013). https://doi.org/10.1109/APS.2013.6711673.

    Book  Google Scholar 

  111. N. Qaddoumi, E. Ranu, J. D. McColskey, et al., J. Res. Nondestruct. Eval., 12, No. 2, 87–103 (2000). https://doi.org/10.1080/09349840009409652.

    Article  ADS  Google Scholar 

  112. S. A. Johnson, D. A. Christensen, C. C. Johnson, et al., in: Ultrason. Symp. Proc., 26–28 October 1977, Phoenix, p. 977–982. https://doi.org/10.1109/ULTSYM.1977.196983.

  113. Z. Chu, S. Z. Pinter, J. Yuan, et al., AIP Conf. Proc.,, 1816, No. 1, 050003 (2017). https://doi.org/10.1063/1.4976601.

    Article  Google Scholar 

  114. C. Yang, S. Wu, Y. Bai, and H. Gao, Front. Biol. China, 4, No. 3, 254–259 (2009). https://doi.org/10.1007/s11515-009-0022-9.

    Article  Google Scholar 

  115. A. Mashal, J. H. Booske, and S. C. Hagness, Phys. Med. Biol., 54, No. 3, 641–650 (2009). https://doi.org/10.1088/0031-9155/54/3/011.

    Article  Google Scholar 

  116. D. Rueter and T. Morgenstern, Ultrasonics, 54, No. 8, 2141–2150 (2014). https://doi.org/10.1016/j.ultras.2014.06.012.

    Article  Google Scholar 

  117. X. Jian, S. Dixon, and R. S. Edwards, Insight: Non-Destr. Test. Cond. Monitor., 46, No. 11, 671–673 (2004). https://doi.org/10.1784/insi.46.11.671.52289.

    Article  Google Scholar 

  118. B. A. Wincheski, J. W. Simpson, and A. Koshti, “Development of eddy current techniques for the detection of cracking in space shuttle primary reaction control thrusters: techn. rep. NASA/TP-2007-214878, L-19338,” NASA Johnson Space Center, Houston (2007).

  119. J. Hansen, Insight: Non-Destr. Test. Cond. Monitor, 46, No. 5, 279–281 (2004). https://doi.org/10.1784/insi.46.5.279.55563.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Sutin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, No. 1, pp. 44–59, January 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutin, A.M., Salloum, H. Interaction of Acoustic and Electromagnetic Waves in Nondestructive Evaluation and Medical Applications. Radiophys Quantum El 63, 40–54 (2020). https://doi.org/10.1007/s11141-020-10033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-020-10033-z

Navigation