Skip to main content
Log in

Gold nanotubes: synthesis, properties and biomedical applications

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 106 references) summarizes the latest progress in the synthesis, properties and biomedical applications of gold nanotubes (AuNTs). Following an introduction into the field, a first large section covers two popular AuNTs synthesis methods. The hard template method introduces anodic alumina oxide template (AAO) and track-etched membranes (TeMs), while the sacrificial template method based on galvanic replacement introduces bimetallic, trimetallic AuNTs and AuNT-semiconductor hybrid materials. Then, the factors affecting the morphology of AuNTs are discussed. The next section covers their unique surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and their catalytic properties. This is followed by overviews on the applications of AuNTs in biosensors, protein transportation, photothermal therapy and imaging. Several tables are presented that give an overview on the wealth of synthetic methods, morphology factors and biological application. A concluding section summarizes the current status, addresses current challenges and gives an outlook on potential applications of AuNTs in biochemical detection and drug delivery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubes of graphite carbon. Nature 354(6348):56–58

    CAS  Google Scholar 

  2. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779

    CAS  PubMed  Google Scholar 

  3. Luo P, Liu Y, Xia Y, Xu H, Xie G (2014) Aptamer biosensor for sensitive detection of toxin a of Clostridium difficile using gold nanoparticles synthesized by Bacillus stearothermophilus. Biosens Bioelectron 54:217–221

    CAS  PubMed  Google Scholar 

  4. Wang Y, Black KCL, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu S-Y, Li M, Kim P, Li Z-Y, Wang LV, Liu Y, Xia Y (2013) Comparison study of gold Nanohexapods, Nanorods, and Nanocages for Photothermal Cancer treatment. ACS Nano 7(3):2068–2077

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang L, Zou J, Ye JY, Zhou ZY, Lin Z, Kang X, Jain PK, Chen S (2019) Synergy between Plasmonic and Electrocatalytic activation of methanol oxidation on palladium–silver alloy nanotubes. Angew Chem Int Ed 58(26):8794–8798

    CAS  Google Scholar 

  6. Liu J, Detrembleur C, De Pauw-Gillet MC, Mornet S, Jerome C, Duguet E (2015) Gold nanorods coated with mesoporous silica shell as drug delivery system for remote near infrared light-activated release and potential phototherapy. Small 11(19):2323–2332

    PubMed  Google Scholar 

  7. Wang JZG, You M (2012) Assembly of Aptamer switch probes and photosensitizer on gold Nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6(6):5070–5077

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zierold R, Nielsch K (2011) Tailor-made, magnetic nanotubes by template-directed atomic layer deposition. ECS Trans 41(2):111–121

    CAS  Google Scholar 

  9. Bi Y, Lu G (2008) Controlled synthesis of pentagonal gold nanotubes at room temperature. Nanotechnology 19(27):275306

    PubMed  Google Scholar 

  10. Kohli P, Wharton JE, Braide O, Martin CR (2004) Template synthesis of gold nanotubes in an anodic alumina membrane. J Nanosci Nanotechnol 4(6):605–610

    CAS  PubMed  Google Scholar 

  11. Chen J, Wiley BJ, Xia Y (2007) One-dimensional nanostructures of metals: large-scale synthesis and some potential applications. Langmuir 23(8):4120–4129

    CAS  PubMed  Google Scholar 

  12. Sun Y, Mayers BT, Xia Y (2002) Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2(5):481–485

    CAS  Google Scholar 

  13. Through N (2002) Large-scale synthesis of uniform silver. Adv Mater 11:833–837

    Google Scholar 

  14. Zhu J (2009) Composition-dependent plasmon shift in Au-Ag alloy nanotubes: effect of local field distribution. J Phys Chem C 113(8):3164–3167

    CAS  Google Scholar 

  15. Ye S, Marston G, McLaughlan JR, Sigle DO, Ingram N, Freear S, Baumberg JJ, Bushby RJ, Markham AF, Critchley K, Coletta PL, Evans SD (2015) Engineering gold nanotubes with controlled length and near-infrared absorption for theranostic applications. Adv Funct Mater 25(14):2117–2127

    CAS  Google Scholar 

  16. Mashentseva A, Borgekov D, Kislitsin S, Zdorovets M, Migunova A (2015) Comparative catalytic activity of PET track-etched membranes with embedded silver and gold nanotubes. Nucl Instrum Methods Phys Res, Sect B 365:70–74

    CAS  Google Scholar 

  17. Wirtz M, Parker M, Kobayashi Y, Martin CR (2002) Template-synthesized nanotubes for chemical separations and analysis. Chem Eur J 8(16):3572–3578

    CAS  PubMed  Google Scholar 

  18. Chen A, Ding Y, Yang Z, Yang S (2015) Constructing heterostructure on highly roughened caterpillar-like gold nanotubes with cuprous oxide grains for ultrasensitive and stable nonenzymatic glucose sensor. Biosens Bioelectron 74:967–973

    CAS  PubMed  Google Scholar 

  19. Costa JCS, Corio P, Rossi LM (2015) Catalytic oxidation of cinnamyl alcohol using Au-Ag nanotubes investigated by surface-enhanced Raman spectroscopy. Nanoscale 7(18):8536–8543

    CAS  PubMed  Google Scholar 

  20. Ye S, Marston G, Markham AF, Louise Coletta P, Evans SD (2019) Developing gold nanotubes as photoacoustic contrast agents. J Phys Conf Ser 1151:012018

    CAS  Google Scholar 

  21. Ma C, Han R, Qi S, Yeung ES (2012) Selective transport of single protein molecules inside gold nanotubes. J Chromatogr A 1238:11–14

    CAS  PubMed  Google Scholar 

  22. Li HH, Yu SH (2019) Recent advances on controlled synthesis and engineering of hollow alloyed nanotubes for Electrocatalysis. Adv Mater 31(38):e1803503

    PubMed  Google Scholar 

  23. Dong W, Dong H, Wang Z, Zhan P, Yu Z, Zhao X, Zhu Y, Ming N (2006) Ordered array of gold nanoshells interconnected with gold nanotubes fabricated by double templating. Adv Mater 18(6):755–759

    CAS  Google Scholar 

  24. Walker SA, Zasadzinski JA, Glinka C, Nicol J, Margolese D, Stucky GD, Chmelka BF (1995) Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies. Science 267(5201):1138–1143

    PubMed  Google Scholar 

  25. Qian XF, Yin J, Feng S, Liu SH, Zhu ZK (2001) Preparation and characterization of polyvinylpyrrolidone films containing silver sulfide nanoparticles. J Mater Chem 11(10):2504–2506

    CAS  Google Scholar 

  26. AlMawlawi D, Coombs N, Moskovits M (1991) Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size. J Appl Phys 70(8):4421–4425

    CAS  Google Scholar 

  27. Zhang X, Wang H, Bourgeois L, Pan R, Zhao D, Webley PA (2008) Direct electrodeposition of gold nanotube arrays for sensing applications. J Mater Chem 18(4):463–467

    CAS  Google Scholar 

  28. Bridges CR, DiCarmine PM, Seferos DS (2012) Gold nanotubes as sensitive, solution-Suspendable refractive index reporters. Chem Mater 24(6):963–965

    CAS  Google Scholar 

  29. Al-Kaysi RO, Ghaddar TH, Guirado G (2009) Fabrication of one-dimensional organic nanostructures using anodic aluminum oxide templates. J Nanomater 2009:7

    Google Scholar 

  30. McPhillips J, Murphy A, Jonsson MP, Hendren WR, Atkinson R, Höök F, Zayats AV, Pollard RJ (2010) High-performance biosensing using arrays of plasmonic nanotubes. ACS Nano 4(4):2210–2216

    CAS  PubMed  Google Scholar 

  31. Murphy A, McPhillips J, Hendren W, McClatchey C, Atkinson R, Wurtz G, Zayats AV, Pollard RJ (2011) The controlled fabrication and geometry tunable optics of gold nanotube arrays. Nanotechnology 22(4):045705

    PubMed  Google Scholar 

  32. Hendren WR, Murphy A, Evans P, O’Connor D, Wurtz GA, Zayats AV, Atkinson R, Pollard RJ (2008) Fabrication and optical properties of gold nanotube arrays. J Phys Condens Matter 20(36):362203

    Google Scholar 

  33. Tian T, Dong J, Xu J (2016) Direct electrodeposition of highly ordered gold nanotube arrays for use in non-enzymatic amperometric sensing of glucose. Microchim Acta 183(6):1925–1932

    CAS  Google Scholar 

  34. Yang G, Yang X, Yang C, Yang Y (2011) A reagentless amperometric immunosensor for human chorionic gonadotrophin based on a gold nanotube arrays electrode. Colloids Surf A Physicochem Eng Asp 389(1–3):195–200

    CAS  Google Scholar 

  35. Yang G, Chen Y, Li L, Yang Y (2011) Direct electrochemical determination of morphine on a novel gold nanotube arrays electrode. Clin Chim Acta 412(17–18):1544–1549

    CAS  PubMed  Google Scholar 

  36. Yang G, Li L, Jiang J, Yang Y (2012) Direct electrodeposition of gold nanotube arrays of rough and porous wall by cyclic voltammetry and its applications of simultaneous determination of ascorbic acid and uric acid. Mater Sci Eng C 32(6):1323–1330

    CAS  Google Scholar 

  37. Shariati M, Ghorbani M, Sasanpour P, Karimizefreh A (2019) An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment. Anal Chim Acta 1048:31–41

    CAS  PubMed  Google Scholar 

  38. Bridges CR, DiCarmine PM, Fokina A, Huesmann D, Seferos DS (2013) Synthesis of gold nanotubes with variable wall thicknesses. J Mater Chem A 1(4):1127–1133

    CAS  Google Scholar 

  39. Fleischer RL, Buford Price P, Walker RW (1975) Nuclear tracks in solids: principles and applications. University of California Press, Berkeley 40 (6):697

  40. Fink D, Chandra A, Alegaonkar P, Berdinsky A, Petrov A, Sinha D (2007) Nanoclusters and nanotubes for swift ion track technology. Radiat Eff Defects Solids 162(3–4):151–156

    CAS  Google Scholar 

  41. Mashentseva AA, Korolkov IV, Yeszhanov AB, Zdorovets MV, Russakova AV (2019) The application of composite ion track membranes with embedded gold nanotubes in the reaction of aminomethylation of acetophenone. Mater Res Express 6(11):115022

    CAS  Google Scholar 

  42. Bahari Mollamahalle Y, Ghorbani M, Dolati A (2012) Electrodeposition of long gold nanotubes in polycarbonate templates as highly sensitive 3D nanoelectrode ensembles. Electrochim Acta 75:157–163

    CAS  Google Scholar 

  43. Wang HW, Shieh CF, Chen HY, Shiu WC, Russo B, Cao G (2006) Standing [111] gold nanotube to nanorod arrays via template growth. Nanotechnology 17(10):2689–2694

    CAS  PubMed  Google Scholar 

  44. Barreca D, Gasparotto A, Maragno C, Tondello E (2005) Synthesis of gold nanotubes by sputtering of gold into porous materials. J Nanosci Nanotechnol 5(11):1883–1886

    CAS  PubMed  Google Scholar 

  45. Mollamahale YB, Ghorbani M, Ghalkhani M, Vossoughi M, Dolati A (2013) Highly sensitive 3D gold nanotube ensembles: application to electrochemical determination of metronidazole. Electrochim Acta 106:288–292

    CAS  Google Scholar 

  46. Baker LA, Jin P, Martin CR (2005) Biomaterials and biotechnologies based on nanotube membranes. Crit Rev Solid State Mater Sci 30(4):183–205

    CAS  Google Scholar 

  47. Pyo M, Joo J, Youn SJ (2007) Simultaneous control of Au nanotube lengths and pore sizes with a single kind of polycarbonate membrane via interfacial deposition at the air/water interface. Bull Kor Chem Soc 28(8):1285–1288

    CAS  Google Scholar 

  48. Tao M, Li X, Wu Z, Wang M, Hua M, Yang Y (2011) The preparation of label-free electrochemical immunosensor based on the Pt-Au alloy nanotube array for detection of human chorionic gonadotrophin. Clin Chim Acta 412(7–8):550–555

    CAS  PubMed  Google Scholar 

  49. Siwy Z, Trofin L, Kohli P, Baker LA, Trautmann C, Martin CR (2005) Protein biosensors 'based on biofunctionalized conical gold nanotubes. J Am Chem Soc 127(14):5000–5001

    CAS  PubMed  Google Scholar 

  50. Sun Y, Xia Y (2004) Multiple-walled nanotubes made of metals. Adv Mater 16(3):264–268

    CAS  Google Scholar 

  51. Luo M, Zhou M, Da Silva RR, Tao J, Figueroa-Cosme L, Gilroy KD, Peng HC, He Z, Xia Y (2017) Pentatwinned cu nanowires with ultrathin diameters below 20 nm and their use as templates for the synthesis of au-based nanotubes. ChemNanoMat 3(3):190–195

    CAS  Google Scholar 

  52. Kim HW, Lee JW, Kebede MA, Kim HS, Srinivasa B, Kong MH, Lee C (2008) Fabrication of gold nanotubes from removable MgO nanowires templates. J Nanosci Nanotechnol 8(11):5715–5719

    CAS  PubMed  Google Scholar 

  53. Ballabh R, Nara S (2015) Template based synthesis of gold nanotubes using biologically synthesized gold nanoparticles. Indian J Exp Biol 53(12):828–833

    CAS  PubMed  Google Scholar 

  54. Lu MY, Chang YC, Chen LJ (2006) Synthesis of Au nanotubes with SiOx nanowires as sacrificial templates. J Vac Sci Technol A 24(4):1336–1339

    CAS  Google Scholar 

  55. Schwartzberg AM, Olson TY, Talley CE, Zhang JZ (2007) Gold nanotubes synthesized via magnetic alignment of cobalt nanoparticles as templates. J Phys Chem C 111(44):16080–16082

    CAS  Google Scholar 

  56. Hunyadi SE, Murphy CJ (2006) Bimetallic silver-gold nanowires: fabrication and use in surface-enhanced Raman scattering. J Mater Chem 16(40):3929–3935

    CAS  Google Scholar 

  57. Zhu H, Chen H, Wang J, Li Q (2013) Fabrication of Au nanotube arrays and their plasmonic properties. Nanoscale 5(9):3742–3746

    CAS  PubMed  Google Scholar 

  58. Sun XM, Li YD (2005) Cylindrical silver nanowires: preparation, structure, and optical properties. Adv Mater 17(21):2626–2630

    CAS  Google Scholar 

  59. El Mel AA, Chettab M, Gautron E, Chauvin A, Humbert B, Mevellec JY, Delacote C, Thiry D, Stephant N, Ding J, Du K, Choi CH, Tessier PY (2016) Galvanic replacement reaction: a route to highly ordered bimetallic nanotubes. J Phys Chem C 120(31):17652–17659

    Google Scholar 

  60. Sun Y (2010) Silver nanowires - unique templates for functional nanostructures. Nanoscale 2(9):1626–1642

    CAS  PubMed  Google Scholar 

  61. Gu X, Cong X, Ding Y (2010) Platinum-decorated Au porous nanotubes as highly efficient catalysts for formic acid electro-oxidation. ChemPhysChem 11(4):841–846

    CAS  PubMed  Google Scholar 

  62. Sun H, Guo X, Ye W, Kou S, Yang J (2016) Charge transfer accelerates galvanic replacement for PtAgAu nanotubes with enhanced catalytic activity. Nano Res 9(4):1173–1181

    CAS  Google Scholar 

  63. Guan S, Fu X, Tang Y, Peng Z (2017) AuAg@CdS double-walled nanotubes: synthesis and nonlinear absorption properties. Nanoscale 9(29):10277–10284

    CAS  PubMed  Google Scholar 

  64. Guan S, Fu X, Tang Y, Peng Z (2017) Synthesis and photoeletrochemical performance of AuAg@CdS double-walled nanotubes. Chem Phys Lett 682:128–132

    CAS  Google Scholar 

  65. Kundu S, Patra A (2017) Nanoscale strategies for light harvesting. Chem Rev 117(2):712–757

    CAS  PubMed  Google Scholar 

  66. Wiley B, Herricks T, Sun Y, Xia Y Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4(10):2057–2057

  67. Rodrigues TS, Silva AGM, Moura ABL, Geonmonond RS, Camargo PHC (2016) AgAu nanotubes: investigating the effect of surface morphologies and optical properties over applications in catalysis and photocatalysis. J Braz Chem Soc 28(9):1630–1638

    Google Scholar 

  68. Sun Y, Xia Y (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 126(12):3892–3901

    CAS  PubMed  Google Scholar 

  69. Skrabalak SE, Au L, Li X, Xia Y (2007) Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc 2(9):2182–2190

    CAS  PubMed  Google Scholar 

  70. Gu X, Xu L, Tian F, Ding Y (2009) Au-Ag alloy nanoporous nanotubes. Nano Res 2(5):386–393

    CAS  Google Scholar 

  71. Sun Y, Mayers B, Xia Y (2003) Metal nanostructures with hollow interiors. Adv Mater 15(78):641–646

    CAS  Google Scholar 

  72. Margalit S, Avraham S, Shahal T, Michaeli Y, Gilat N, Magod P, Caspi M, Loewenstein S, Lahat G, Friedmann-Morvinski D, Kariv R, Rosin-Arbesfeld R, Zirkin S, Ebenstein Y (2019) 5-Hydroxymethylcytosine as a clinical biomarker: fluorescence-based assay for high-throughput epigenetic quantification in human tissues. Int J Cancer 146(1):115–122

    PubMed  Google Scholar 

  73. Yang A, Bi J, Yang S, Zhang J, Chen A, Liang S (2014) Highly surface-roughened caterpillar-like Au/Ag nanotubes for sensitive and reproducible substrates for surface enhanced Raman spectroscopy. RSC Adv 4(86):45856–45861

    CAS  Google Scholar 

  74. Yin X, Teradal NL, Jelinek R (2017) Porous gold nanotubes for enhanced methanol oxidation catalysis. ChemistrySelect 2(34):10961–10964

    CAS  Google Scholar 

  75. Zhou Z, Zhang F, Wang J, Zhang X, Xu W, Wu R, Liao L, Wang X, Wei J (2019) L-cysteine modified ZnO: small change while great progress. Mater Sci Eng C Mater Biol Appl 103:109818

    CAS  PubMed  Google Scholar 

  76. Shao K, Zhang C, Ye S, Cai K, Wu L, Wang B, Zou C, Lu Z, Han H (2017) Near–infrared electrochemiluminesence biosensor for high sensitive detection of porcine reproductive and respiratory syndrome virus based on cyclodextrin-grafted porous Au/PtAu nanotube. Sensors Actuators B Chem 240:586–594

    CAS  Google Scholar 

  77. Ocwieja M, Barbasz A, Walas S, Roman M, Paluszkiewicz C (2017) Physicochemical properties and cytotoxicity of cysteine-functionalized silver nanoparticles. Colloids Surf B Biointerfaces 160:429–437

    CAS  PubMed  Google Scholar 

  78. Liu H, Li Z, Yan Y, Zhao J, Wang Y (2019) Chiroptical study of bimetal-cysteine hybrid composite: interaction between cysteine and Au/Ag alloyed nanotubes. Nanoscale 11(45):21990–21998

    CAS  PubMed  Google Scholar 

  79. Zhu J (2007) Theoretical study of the light scattering from gold nanotubes: effects of wall thickness. Mater Sci Eng 454:685–689

    Google Scholar 

  80. Zhao S, Zhu J (2017) The effect of local dielectric environment on the resonance light scattering of Au–Ag bimetallic nanotube. Appl Phys A 123(12):1–9

    Google Scholar 

  81. Velichko EA (2014) Plasmon resonances in the scattering and absorption of light by a circular gold nanotube. 2014 IEEE 34th International Scientific Conference on Electronics and Nanotechnology, ELNANO 2014 - Conference Proceedings:42–45

  82. Xu H, Li H, Liu Z, Xie S, Zhou X, Wu J (2011) Adjustable plasmon resonance in the coaxial gold nanotubes. Solid State Commun 151(10):759–762

    CAS  Google Scholar 

  83. Costa JCS, Corio P, Camargo PHC (2012) Silver-gold nanotubes containing hot spots on their surface: facile synthesis and surface-enhanced Raman scattering investigations. RSC Adv 2(26):9801–9804

    CAS  Google Scholar 

  84. Choi Y, Baker LA, Hillebrenner H, Martin CR (2006) Biosensing with conically shaped nanopores and nanotubes. Phys Chem Chem Phys 8(43):4976–4988

    CAS  PubMed  Google Scholar 

  85. Zhai J, Cui H, Yang R (1997) DNA based biosensors. Biotechnol Adv 15(1):43–58

    CAS  PubMed  Google Scholar 

  86. McCooey A (2015) High sensitivity nucleic acid detection using metal nanowires and nanotubes. phD thesis, Dublin city university

  87. WHO global tuberculosis report (2014) https://www.who.int/tb/publications/global_report/archive/en/

  88. Torati SR, Reddy V, Yoon SS, Kim C (2016) Electrochemical biosensor for mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform. Biosens Bioelectron 78:483–488

    CAS  PubMed  Google Scholar 

  89. Li X, Cao L, Zhang Y, Yan P, Kirk DW (2017) Fabrication and modeling of an ultrasensitive label free impedimetric immunosensor for Aflatoxin B1 based on protein a self-assembly modified gold 3D nanotube electrode ensembles. Electrochim Acta 247:1052–1059

    CAS  Google Scholar 

  90. Bhakta SA, Evans E, Benavidez TE, Garcia CD (2015) Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta 872:7–25

    CAS  PubMed  Google Scholar 

  91. Sexton LT, Horne LP, Sherrill SA, Bishop GW, Baker LA, Martin CR (2007) Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J Am Chem Soc 129(43):13144–13152

    CAS  PubMed  Google Scholar 

  92. Movileanu L, Howorka S, Braha O, Bayley H (2000) Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat Biotechnol 18(10):1091–1095

    CAS  PubMed  Google Scholar 

  93. Björck L, Kronvall GP (1984) Purification and some properties of streptococcal protein G, a novel IgG-binding reagent. J Immunol 133(2):969–974

    PubMed  Google Scholar 

  94. Poli MA, Victor RR, John FH, Gerald AM Detection of ricin by colorimetric and chemiluminescence ELISA. Toxicon Off J Int Soc Toxinol 32(11):0–1377

  95. Hong P, Li W, Li J (2012) Applications of aptasensors in clinical diagnostics. Sensors 12(2):1181–1193

    CAS  PubMed  Google Scholar 

  96. Tang P, Liu Y, Liu Y, Meng H, Liu Z, Li K, Wu D (2019) Thermochromism-induced temperature self-regulation and alternating photothermal nanohelix clusters for synergistic tumor chemo/photothermal therapy. Biomaterials 188:12–23

    CAS  PubMed  Google Scholar 

  97. Jabeen F, Najam-ul-Haq M, Javeed R, Huck CW, Bonn GK (2014) Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Molecules 19(12):20580–20593

    PubMed  PubMed Central  Google Scholar 

  98. Hu Y, Liu X, Cai Z, Zhang H, Gao H, He W, Wu P, Cai C, Zhu J-J, Yan Z (2018) Enhancing the plasmon resonance absorption of multibranched gold nanoparticles in the near-infrared region for photothermal cancer therapy: theoretical predictions and experimental verification. Chem Mater 31(2):471–482

    Google Scholar 

  99. Hainfeld JF, Lin L, Slatkin DN, Avraham Dilmanian F, Vadas TM, Smilowitz HM (2014) Gold nanoparticle hyperthermia reduces radiotherapy dose. Nanomedicine 10(8):1609–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Maji SK, Sreejith S, Joseph J, Lin M, He T, Tong Y, Sun H, Yu SW-K, Zhao Y (2014) Upconversion nanoparticles as a contrast agent for photoacoustic imaging in live mice. Adv Mater 26(32):5633–5638

    CAS  PubMed  Google Scholar 

  101. Huang X, Neretina S, El-Sayed MA (2010) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910

    Google Scholar 

  102. Bardhan R, Lal S, Joshi A, Halas NJ (2011) Theranostic Nanoshells: from probe design to imaging and treatment of Cancer. Acc Chem Res 44(10):936–946

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Cai Y, Zhou M, Zeng M, Zhang C, Feng YP (2011) Adsorbate and defect effects on electronic and transport properties of gold nanotubes. Nanotechnology 22(21):215702

    PubMed  Google Scholar 

  104. Sun Y, Xia Y (2011) Synthesis of gold nanoshells and their use in sensing applications MRS proceedings 776

  105. Wang P, Nasir ME, Krasavin AV, Dickson W, Jiang Y, Zayats AV (2019) Plasmonic metamaterials for nanochemistry and sensing. Acc Chem Res 52:3018–3028

    CAS  PubMed  Google Scholar 

  106. Lopatynskyi AM, Malymon YO, Lytvyn VK, Mogylnyi IV, Rachkov AE, Soldatkin AP, Chegel VI (2017) Solid and hollow gold nanostructures for Nanomedicine: comparison of photothermal properties. Plasmonics 13(5):1659–1669

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhu or Jun-wu Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yl., Zhu, J., Weng, Gj. et al. Gold nanotubes: synthesis, properties and biomedical applications. Microchim Acta 187, 612 (2020). https://doi.org/10.1007/s00604-020-04460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04460-y

Keywords

Navigation