Skip to main content
Log in

Composite synchronization of four exciters driven by induction motors in a vibration system

  • Original papers
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, a newly composite synchronization scheme is proposed to ensure the straight line vibration form of a linear vibration system driven by four exciters. Composite synchronization is a combination of self-synchronization and controlled synchronization. Firstly, controlled synchronization of two pairs of homodromous coupling exciters with zero phase differences is implemented by using the master–slave control structure and the adaptive sliding mode control algorithm. On basis of controlled synchronization, self-synchronization of two coupling exciters rotating in the opposite directions is studied. Based on the perturbation method, the synchronization and stability conditions of composite synchronization are obtained. The theoretical results indicate that composite synchronization of four exciters with zero phase differences can be implemented with different supply frequencies and the straight line vibration form of the linear vibration system also can be obtained. Some simulations are conducted to verify the feasibility of the proposed composite synchronization scheme. The effects of some structural parameters on composite synchronization of four exciters are discussed. Finally, some experiments are operated to validate the effectiveness of the proposed composite synchronization scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Pena Ramirez J, Olvera LA, Nijmeijer H, Alvarez J (2016) The sympathy of two pendulum clocks: beyond Huygens’ observations. Sci Rep 6:23580

    Article  Google Scholar 

  2. Hoogeboom FN, Pogromsky AY, Nijmeijer H (2016) Huygens’ inspired multi-pendulum setups: experiments and stability analysis. Chaos 26:116304

    Article  Google Scholar 

  3. Kapitaniak M, Czolczynski K, Perlikowski P, Stefanski A, Kapitaniak T (2014) Synchronous states of slowly rotating pendula. Phys Rep 541:1–44

    Article  MathSciNet  Google Scholar 

  4. Czolczynski K, Perlikowski P, Stefanski A, Kapitaniak T (2012) Synchronization of pendula rotating in different directions. Commun Nonlinear Sci 17:3658–3672

    Article  MathSciNet  Google Scholar 

  5. Kapitaniak M, Lazarek M, Nielaczny M, Czolczynski K, Perlikowski P, Kapitaniak T (2014) Synchronization extends the life time of the desired behavior of globally coupled systems. Sci Rep 4:4391

    Article  Google Scholar 

  6. Blekhman II (1988) Synchronization in science and technology. ASME Press, New York

    Google Scholar 

  7. Wen B, Fan J, Zhao C, Xiong W (2009) Vibratory synchronization and controlled synchronization in engineering. Science Press, Beijing

    Google Scholar 

  8. Liu C, Zhang S, Zhou H, Li J, Xia Y, Peng L, Wang H (2012) Dynamic analysis and simulation of four-axis forced synchronizing banana vibrating screen of variable linear trajectory. J Cent South Univ 19:1530–1536

    Article  Google Scholar 

  9. Wen B, Zhang H, Liu S, He Q, Zhao C (2010) Theory and techniques of vibrating machinery and their applications. Science Press, Beijing

    Google Scholar 

  10. Zhang X, Li C, Wang Z, Cui S (2018) Synchronous stability of four homodromy vibrators in a vibrating system with double resonant types. Shock Vib 2018:1–20

    Google Scholar 

  11. Zou M, Fang P, Peng H, Hou D, Du M, Hou Y (2019) Study on synchronization characteristics for self-synchronous vibration system with dual-frequency and dual-motor excitation. J Mech Sci Technol 33:1065–1078

    Article  Google Scholar 

  12. Li L, Chen X (2019) Times-frequency synchronization of two exciters with the opposite rotating directions in a vibration system. J Sound Vib 443:591–604

    Article  Google Scholar 

  13. Dimentberg M, Cobb E, Mensching J (2001) Self-synchronization of transient rotations in multiple shaft systems. J Vib Control 7:221–232

    Article  Google Scholar 

  14. Palacios JL, Balthazar JM, Brasil RM (2003) A short note on a nonlinear system vibrations under two non-ideal excitations. J Braz Soc Mech Sci 25:391–395

    Article  Google Scholar 

  15. Balthazar JM, Felix JLP, Brasil RM (2005) Some comments on the numerical simulation of self-synchronization of four non-ideal exciters. Appl Math Comput 164:615–625

    MathSciNet  MATH  Google Scholar 

  16. Djanan AAN, Nbendjo BRN, Woafo P (2014) Effect of self-synchronization of DC motors on the amplitude of vibration of a rectangular plate. Eur Phys J-Spec Top 223:813–825

    Article  Google Scholar 

  17. Djanan AAN, Nbendjo BRN, Woafo P (2015) Self-synchronization of two motors on a rectangular plate and reduction of vibration. J Vib and Control 21:2114–2123

    Article  Google Scholar 

  18. Djanan AAN, Nbendjo BRN (2018) Effect of two moving non-ideal sources on the dynamic of a rectangular plate. Nonlinear Dynam 92:645–657

    Article  Google Scholar 

  19. Miklos A, Szabo Z (2015) Simulation and experimental validation of the dynamical model of a dual-rotor vibrotactor. J Sound Vib 334:98–107

    Article  Google Scholar 

  20. Huang Z, Song G, Li Y, Sun M (2019) Synchronous control of two counter-rotating eccentric rotors in nonlinear coupling vibration system. Mech Syst Signal Pr 114:68–83

    Article  Google Scholar 

  21. Kong X, Zhang X, Chen X, Wen B, Wang B (2016) Phase and speed synchronization control of four eccentric rotors driven by induction motors in a linear vibratory feeder with unknown time-varying load torques using adaptive sliding mode control algorithm. J Sound Vib 370:23–42

    Article  Google Scholar 

  22. Kong X, Wen B (2018) Composite synchronization of a four eccentric rotors driven vibration system with a mass-spring rigid base. J Sound Vib 427:63–81

    Article  Google Scholar 

  23. Stephen JC (2012) Electric Machinery Fundamentals, 5th edn. McGraw-Hill, New York

    Google Scholar 

  24. Chen J (1989) Mathematical model and speed adjustment system of alternating motors. National Defense Industry Press, Beijing

    Google Scholar 

  25. Wheeler G, Su C, Stepanenko Y (1998) A sliding mode controller with improved adaptation laws for the upper bounds on the norm of uncertainties. Automatica 34:1657–1661

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant numbers 51705337, 51375080], the China Postdoctoral Science Foundation [grant numbers 2017M611258], the Doctoral Start-up Foundation of Liaoning Province [grant numbers 20170520111] and the Natural Science Foundation of Liaoning Province [grant numbers 2019MS245 and 20180551036].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangxi Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: [22]

In our work, we take exciters 1 and 2 as example to explain the controlled synchronization of exciters 1, 2 and 3, 4. From Eq. (7), the equations of motion of exciters 1 and 2 are rewritten as

$$\begin{aligned} & \ddot{\varphi }_{1} = a_{1} \dot{\varphi }_{1} + b_{1} u_{1} + w_{1} T_{L1} \\ & \ddot{\varphi }_{2} = a_{2} \dot{\varphi }_{2} + b_{2} u_{2} + w_{2} T_{L2} , \\ \end{aligned}$$
(27)

where u1 and u2 are the torque currents of exciters 1 and 2; a1, a2, b1, b2, w1 and w2 are the corresponding coefficients, a1 = -f1/J1, b1 = KT1/J1, w1 = -1/J1, a2 = -f2/J2, b2 = KT2/J2, w2 = -1/J2.

The phase tracking error is expressed as

$$e = \varphi_{1} - \varphi_{2} .$$
(28)

From Eqs. (27) and (28), we can obtain

$$\ddot{e} = a_{2} \dot{e} - b_{2} u_{2} + W,$$
(29)

where W is a bounded uncertainty, \(W = (a_{1} - a_{2} )\dot{\varphi }_{1} + b_{1} u_{1} + w_{1} T_{L1} - w_{2} T_{L2}\). Here, \(\left| W \right| < \rho\) is assumed, where ρ is a positive constant.

The sliding variable is designed as

$$S = \dot{e} + \kappa e + h\int_{0}^{t} {ed\tau } .$$
(30)

where κ and h are two positive constants.

From Eqs. (29) and (30), we can obtain

$$\dot{S} = (a_{2} + \kappa )\dot{e} + he - b_{2} u_{2} + W.$$
(31)

Choosing \(\dot{S} = 0\) and ignoring the uncertain term W, the equivalent input is obtained as

$$u_{eq2} = (b_{2} )^{ - 1} [(a_{2} + \kappa )\dot{e} + he].$$
(32)

To reject the parametric perturbations and disturbances, the robust controller is designed

$$u_{sw2} = (b_{2} )^{ - 1} \left[ {\beta \text{sgn} (S)} \right].$$
(33)

where β is a positive constant and sgn(\(\cdot\)) is the sign function

$${\text{sgn}}(S) = \left\{ {\begin{array}{*{20}l} {1,} \hfill &\quad {{\text{ }}S > 0,} \hfill \\ {0,} \hfill &\quad {S = 0,} \hfill \\ { - 1,} \hfill &\quad {{\text{ }}S < 0.} \hfill \\ \end{array} } \right.$$

Thus, the sliding mode controller is obtained as

$$u_{2} = u_{eq2} + u_{sw2} = (b_{2} )^{ - 1} [(a_{2} + \kappa )\dot{e} + he + \beta \text{sgn} (S)].$$
(34)

The adaptive algorithm for the boundary of the uncertainty \(\left| W \right|\) is designed as

$$\dot{\beta } = \gamma \left| S \right|,$$
(35)

where γ is the adaptive gain with positive value. According to Eq. (35), the switch gain β is deduced as

$$\beta = \gamma \int_{0}^{t} {\left| {S(\tau )} \right|{\text{d}}\tau } .$$
(36)

The estimated switch gain is defined as \(\hat{\beta }\), where \(\hat{\beta } > \rho\). Moreover, the estimated error \(\hat{\beta }\) can be expressed as

$$\tilde{\beta } = \beta - \hat{\beta }.$$
(37)

By using the modified method [24], the modified adaptive switch gain is obtained as

$$\beta = \gamma \int_{0}^{t} {\left( {\left| {S(\tau )} \right| - p\beta (\tau )} \right){\text{d}}\tau } ,$$
(38)

with

$$\left| {S(t)} \right| = \left\{ {\begin{array}{*{20}l} {\left| {S(t)} \right|,} \hfill & {\left| {S(t)} \right| \ge \delta } \hfill \\ {0,} \hfill & {\left| {S(t)} \right| < \delta } \hfill \\ \end{array} } \right.,$$

where p and δ are two small positive constants.

In order more to reduce the chattering phenomenon, the saturated function \({\text{sat}}( \cdot )\) is employed to replace the sign function \(\text{sgn} ( \cdot )\):

$${\text{sat}}(S) = \left\{ {\begin{array}{*{20}l} {1,} \hfill & {S > \vartheta } \hfill \\ {\left( {{\text{1/}}\vartheta } \right)S,} \hfill & {\left| S \right| \le \vartheta } \hfill \\ { - 1,} \hfill & {S < - \vartheta } \hfill \\ \end{array} } \right.$$
(39)

where ϑ is a positive constant. Finally, the controller u2 is expressed as

$$u_{2} = (b_{2} )^{ - 1} [(a_{2} + \kappa )\dot{e} + he + \beta {\text{sat}}(S)] .$$
(40)

Appendix 2: The terms of Eq. (22)

$$\begin{aligned} a_{11} & = \eta_{1}^{2} [\mu_{1} \cos \gamma_{x} + \mu_{2} \cos \gamma_{y} + \mu_{3} r_{l1}^{2} \cos \gamma_{\psi } ]/2 \\ & \quad + \eta_{1} \eta_{2} [\mu_{1} \cos \gamma_{x} + \mu_{2} \cos \gamma_{y} + \mu_{3} r_{l1} r_{l2} \cos (\theta_{2} - \theta_{1} + \gamma_{\psi } )]/2 \\ \end{aligned}$$
(41)
$$\begin{aligned} a_{12} & = \eta_{1} \eta_{4} [\mu_{1} \cos (2\alpha_{0} + \gamma_{x} ) - \mu_{2} \cos (2\alpha_{0} + \gamma_{y} ) - \mu_{3} r_{l1} r_{l4} \cos (2\alpha_{0} - \theta_{1} - \theta_{4} + \gamma_{\psi } )]/2 \\ & \quad + \eta_{1} \eta_{3} [\mu_{1} \cos (2\alpha_{0} + \gamma_{x} ) - \mu_{2} \cos (2\alpha_{0} + \gamma_{y} ) - \mu_{3} r_{l1} r_{l3} \cos (2\alpha_{0} - \theta_{1} - \theta_{3} + \gamma_{\psi } )]/2, \\ \end{aligned}$$
(42)
$$\begin{aligned} a_{21} & = \eta_{4} \eta_{1} [\mu_{1} \cos (2\alpha_{0} - \gamma_{x} ) - \mu_{2} \cos (2\alpha_{0} - \gamma_{y} ) - \mu_{3} r_{l4} r_{l1} \cos (2\alpha_{0} - \theta_{1} - \theta_{4} - \gamma_{\psi } )]/2 \\ & \quad + \eta_{4} \eta_{2} [\mu_{1} \cos (2\alpha_{0} - \gamma_{x} ) - \mu_{2} \cos (2\alpha_{0} - \gamma_{y} ) - \mu_{3} r_{l4} r_{l2} \cos (2\alpha_{0} - \theta_{2} - \theta_{4} - \gamma_{\psi } )]/2, \\ \end{aligned}$$
(43)
$$\begin{aligned} a_{22} & = \eta_{4}^{2} [\mu_{1} \cos \gamma_{x} + \mu_{2} \cos \gamma_{y} + \mu_{3} r_{l4}^{2} \cos \gamma_{\psi } ]/2 \\ & \quad + \eta_{4} \eta_{3} [\mu_{1} \cos \gamma_{x} + \mu_{2} \cos \gamma_{y} + \mu_{3} r_{l4} r_{l3} \cos (\theta_{4} - \theta_{3} + \gamma_{\psi } )]/2, \\ \end{aligned}$$
(44)
$$\begin{aligned} b_{11} & = \eta_{1}^{2} \omega_{0} [\mu_{1} \sin \gamma_{x} + \mu_{2} \sin \gamma_{y} + \mu_{3} r_{l1}^{2} \sin \gamma_{\psi } ] \\ & \quad + \eta_{1} \eta_{2} \omega_{0} [\mu_{1} \sin \gamma_{x} + \mu_{2} \sin \gamma_{y} + \mu_{3} r_{l1} r_{l2} \sin (\theta_{2} - \theta_{1} + \gamma_{\psi } )], \\ \end{aligned}$$
(45)
$$\begin{aligned} b_{12} & = \eta_{1} \eta_{4} \omega_{0} [\mu_{1} \sin (2\alpha_{0} + \gamma_{x} ) - \mu_{2} \sin (2\alpha_{0} + \gamma_{y} ) - \mu_{3} r_{l1} r_{l4} \sin (2\alpha_{0} - \theta_{1} - \theta_{4} + \gamma_{\psi } )] \\ & \quad + \eta_{1} \eta_{3} \omega_{0} [\mu_{1} \sin (2\alpha_{0} + \gamma_{x} ) - \mu_{2} \sin (2\alpha_{0} + \gamma_{y} ) - \mu_{3} r_{l1} r_{l3} \sin (2\alpha_{0} - \theta_{1} - \theta_{3} + \gamma_{\psi } )], \\ \end{aligned}$$
(46)
$$\begin{aligned} b_{13} & = \eta_{1} \eta_{3} \omega_{0} [\mu_{1} \cos (2\alpha_{0} + \gamma_{x} ) - \mu_{2} \cos (2\alpha_{0} + \gamma_{y} ) - \mu_{3} r_{l1} r_{l3} \cos (2\alpha_{0} - \theta_{1} - \theta_{3} + \gamma_{\psi } )]/2 \\ & \quad + \eta_{1} \eta_{4} \omega_{0} [\mu_{1} \cos (2\alpha_{0} + \gamma_{x} ) - \mu_{2} \cos (2\alpha_{0} + \gamma_{y} ) - \mu_{3} r_{l1} r_{l4} \cos (2\alpha_{0} - \theta_{1} - \theta_{4} + \gamma_{\psi } )]/2, \\ \end{aligned}$$
(47)
$$\begin{aligned} b_{21} & = \eta_{4} \eta_{1} \omega_{0} [ - \mu_{1} \sin (2\alpha_{0} - \gamma_{x} ) + \mu_{2} \sin (2\alpha_{0} - \gamma_{y} ) + \mu_{3} r_{l4} r_{l1} \sin (2\alpha_{0} - \theta_{1} - \theta_{4} - \gamma_{\psi } )] \\ & \quad + \eta_{4} \eta_{2} \omega_{0} [ - \mu_{1} \sin (2\alpha_{0} - \gamma_{x} ) + \mu_{2} \sin (2\alpha_{0} - \gamma_{y} ) + \mu_{3} r_{l4} r_{l2} \sin (2\alpha_{0} - \theta_{2} - \theta_{4} - \gamma_{\psi } )], \\ \end{aligned}$$
(48)
$$\begin{aligned} b_{22} & = \eta_{4}^{2} \omega_{0} [\mu_{1} \sin \gamma_{x} + \mu_{2} \sin \gamma_{y} + \mu_{3} r_{l4}^{2} \sin \gamma_{\psi } ] \\ & \quad + \eta_{4} \eta_{3} \omega_{0} [\mu_{1} \sin \gamma_{x} + \mu_{2} \sin \gamma_{y} + \mu_{3} r_{l4} r_{l3} \sin (\theta_{4} - \theta_{3} + \gamma_{\psi } )], \\ \end{aligned}$$
(49)
$$\begin{aligned} b_{23} & = \eta_{4} \eta_{1} \omega_{0} [ - \mu_{1} \cos (2\alpha_{0} - \gamma_{x} ) + \mu_{2} \cos (2\alpha_{0} - \gamma_{y} ) + \mu_{3} r_{l4} r_{l1} \cos (2\alpha_{0} - \theta_{1} - \theta_{4} - \gamma_{\psi } )]/2 \\ & \quad + \eta_{4} \eta_{2} \omega_{0} [ - \mu_{1} \cos (2\alpha_{0} - \gamma_{x} ) + \mu_{2} \cos (2\alpha_{0} - \gamma_{y} ) + \mu_{3} r_{l4} r_{l2} \cos (2\alpha_{0} - \theta_{2} - \theta_{4} - \gamma_{\psi } )]/2, \\ \end{aligned}$$
(50)
$$\begin{aligned} c_{1} & = \frac{1}{2}\{ \eta_{1}^{2} \omega_{0} [\mu_{1} \sin \gamma_{x} + \mu_{2} \sin \gamma_{y} + \mu_{3} r_{l1}^{2} \sin \gamma_{\psi } ] \\ & \quad + \eta_{1} \eta_{2} \omega_{0} [\mu_{1} \sin \gamma_{x} + \mu_{2} \sin \gamma_{y} + \mu_{3} r_{l1} r_{l2} \sin (\theta_{2} - \theta_{1} + \gamma_{\psi } )] \\ & \quad + \eta_{1} \eta_{3} \omega_{0} [\mu_{1} \sin (2\alpha_{0} + \gamma_{x} ) - \mu_{2} \sin (2\alpha_{0} + \gamma_{y} ) - \mu_{3} r_{l1} r_{l3} \sin (2\alpha_{0} - \theta_{1} - \theta_{3} + \gamma_{\psi } )] \\ & \quad + \eta_{1} \eta_{4} \omega_{0} [\mu_{1} \sin (2\alpha_{0} + \gamma_{x} ) - \mu_{2} \sin (2\alpha_{0} + \gamma_{y} ) - \mu_{3} r_{l1} r_{l4} \sin (2\alpha_{0} - \theta_{1} - \theta_{4} + \gamma_{\psi } )]\} , \\ \end{aligned}$$
(51)
$$\begin{aligned} c_{2} & = \frac{1}{2}\{ \eta_{4} \eta_{1} \omega_{0} [ - \mu_{1} \sin (2\alpha_{0} - \gamma_{x} ) + \mu_{2} \sin (2\alpha_{0} - \gamma_{y} ) + \mu_{3} r_{l4} r_{l1} \sin (2\alpha_{0} - \theta_{1} - \theta_{4} - \gamma_{\psi } )] \\ & \quad + \eta_{4} \eta_{2} \omega_{0} [ - \mu_{1} \sin (2\alpha_{0} - \gamma_{x} ) + \mu_{2} \sin (2\alpha_{0} - \gamma_{y} ) + \mu_{3} r_{l4} r_{l2} \sin (2\alpha_{0} - \theta_{2} - \theta_{4} - \gamma_{\psi } )] \\ & \quad + \eta_{4}^{2} \omega_{0} [\mu_{1} \sin \gamma_{x} + \mu_{2} \sin \gamma_{y} + \mu_{3} r_{l4}^{2} \sin \gamma_{\psi } ] \\ & \quad + \eta_{4} \eta_{3} \omega_{0} [\mu_{1} \sin \gamma_{x} + \mu_{2} \sin \gamma_{y} + \mu_{3} r_{l4} r_{l3} \sin (\theta_{4} - \theta_{3} + \gamma_{\psi } )]\} , \\ \end{aligned} ,$$
(52)

withª

$$\mu_{1} = r_{m} /\mu_{x}, \quad\mu_{2} = r_{m} /\mu_{y}, \quad \mu_{3} = r_{m} /\mu_{\psi }, \quad \bar{T}_{e1} = T_{e01} - k_{e01} \bar{\varepsilon }_{1}\quad \bar{T}_{e4} = T_{e04} - k_{e04} \bar{\varepsilon }_{2}$$

where Te01 = Te1(ω0), Te04 = Te4(ω0), ke01 and ke04 are calculated by substituting parameter values of motors in the flowing equation

$$\begin{aligned} k_{e0} & = \frac{{3n_{p} U_{TH}^{2} R_{r} }}{{(\omega_{e} - n_{p} \omega )^{2} [(R_{s} + R_{r} \omega_{e} /(\omega_{e} - n_{p} \omega ))^{2} + (X_{s} + X_{r} )^{2} ]}} \\ & - \frac{{6n_{p} U_{TH}^{2} R_{r}^{2} (R_{s} + R_{r} \omega_{e} /(\omega_{e} - n_{p} \omega ))\omega_{e} }}{{(\omega_{e} - n_{p} \omega )^{3} [(R_{s} + R_{r} \omega_{e} /(\omega_{e} - n_{p} \omega ))^{2} + (X_{s} + X_{r} )^{2} ]^{2} }} \\ \end{aligned}$$
(53)

Appendix 3: The terms of Eq. (26)

$$d_{1} = \frac{{ - \left( {\eta_{1} + a_{11} } \right)\chi_{22} - a_{12} b_{21} - a_{21} b_{12} - \left( {\eta_{2} + a_{22} } \right)\chi_{11} }}{{\left( {\eta_{1} + a_{11} } \right)\left( {\eta_{2} + a_{22} } \right) - a_{12} a_{21} }}$$
(54)
$$d_{2} = \frac{{ - \left( {\eta_{1} + a_{11} } \right)b_{23} \omega_{0} - a_{12} b_{23} \omega_{0} + a_{21} b_{13} \omega_{0} + \left( {\eta_{2} + a_{22} } \right)b_{13} \omega_{0} + 2\chi_{11} \chi_{22} - 2b_{12} b_{21} }}{{2\left( {\eta_{1} + a_{11} } \right)\left( {\eta_{2} + a_{22} } \right) - 2a_{12} a_{21} }}$$
(55)
$$d_{3} = \frac{{ - \omega_{0} b_{12} b_{23} + \omega_{0} b_{13} b_{21} - \omega_{0} b_{13} \chi_{22} + \omega_{0} b_{23} \chi_{11} }}{{2\left( {\eta_{1} + a_{11} } \right)\left( {\eta_{2} + a_{22} } \right) - 2a_{12} a_{21} }}$$
(56)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Zhou, C. & Wen, B. Composite synchronization of four exciters driven by induction motors in a vibration system. Meccanica 55, 2107–2133 (2020). https://doi.org/10.1007/s11012-020-01246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01246-7

Keywords

Navigation