Skip to main content
Log in

Identification of the viscoelastic properties of an asphalt mixture using a scanning laser Doppler vibrometer

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Estimating the master curve of the complex modulus of asphalt mixtures is essential for high quality and sustainable mixture and pavement design. There are multiple standard methods to estimate this master curve using hydraulic-pneumatic testing machines. These methods are complex to perform, need expensive equipment, and have constraints over the geometry of the testing samples. Therefore, the investigation of alternative methodologies to overcome these issues is of importance. In this research, an experimental setup coupled with a back-calculation technique is developed to identify the viscoelastic properties of an asphalt mixture using an optical measurement system. Using this system instead of traditional transducers eliminates the inaccuracies caused due to the attachment of a transducer to the specimen and allows feasible measurements on multiple points of the specimen. The developed method is compared with a standard method and an alternative method based on analytical formulas, and the results exhibit a good level of accuracy at a wide range of frequency and temperature. It is also demonstrated that even though this method can provide the master curve of a specimen with arbitrary geometry, the first natural frequency of the specimen at the highest temperature provides the first data point of the master curve at low frequencies. Therefore, the first natural frequency of the specimen should be considered while selecting the geometry of the test object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Das A (2015) Analysis of pavement structures. CRC Press, New York

    Google Scholar 

  2. NBN EN 12697-26 (2018) Bituminous mixtures-Test methods-Part 26: Stiffness, Technical report, Bureau voor Normalisatie: Brussels, Belgium

  3. Ren Z, Atalla N, Ghinet S (2016) Optimization based identification of the dynamic properties of linearly viscoelastic materials using vibrating beam technique. J Vib Acoust 133:1–12

    Google Scholar 

  4. He J, Fu Z-F (2001) Modal analysis. Elsevier, Oxford

    Google Scholar 

  5. Gibson RF (2000) Modal vibration response measurements for characterization of composite materials and structures. Compos Sci Technol 60:2769–2780

    Article  Google Scholar 

  6. Gudmarsson A, Carret JC, Pouget S, Nilsson R, Ahmed A, Di Benedetto H, Sauzéat C (2019) Precision of modal analysis to characterise the complex modulus of asphalt concrete. Road Mater Pavement Des 20(sup1):S217–S232

    Article  Google Scholar 

  7. Kweon G, Kim YR (2006) Determination of asphalt concrete complex modulus with impact resonance test. J Transp Res Board 10:151–160

    Article  Google Scholar 

  8. Hasheminejad N, Vuye C, Margaritis A, Van den Bergh W, Dirckx J, Vanlanduit S (2019) Characterizing the complex modulus of asphalt concrete using a scanning laser doppler vibrometer. Materials 12(21):1–18

    Article  Google Scholar 

  9. Shi Y, Sol H, Hua H (2006) Material parameter identification of sandwich beams by an inverse method. J Sound Vib 290(3–5):1234–1255

    Article  Google Scholar 

  10. Gudmarsson A, Ryden N, Birgisson B (2012) Application of resonant acoustic spectroscopy to asphalt concrete beams for determination of the dynamic modulus. Mater Struct 45(12):1903–1913

    Article  Google Scholar 

  11. Gudmarsson A, Ryden N, Di Benedetto H, Sauzeat C, Tapsoba N, Birgisson B (2014) Comparing linear viscoelastic properties of asphalt concrete measured by laboratory seismic and tension-compression tests. J Nondestruct Eval 33:571–582

    Article  Google Scholar 

  12. Whitmoyer S, Kim Y (1994) Determining asphalt concrete properties via the impact resonant method. J Testing Eval 22:139–148

    Article  Google Scholar 

  13. LaCroix A, Kim Y.R, Sadat M, Far S (2009) Constructing the dynamic modulus mastercurve using impact resonance testing, vol 78. Association of Asphalt Paving Technologists

  14. NBN EN 1426 (2015) Bitumen and bituminous binders-Determination of needle penetration, Technical report, Bureau voor Normalisatie: Brussels, Belgium

  15. NBN EN 1427 (2015) Bitumen and bituminous binders-determination of the softening point–ring and ball method, Technical report, Bureau voor Normalisatie: Brussels, Belgium

  16. NBN EN 12593 (2015) Bitumen and bituminous binders-determination of the Fraass breaking point, Technical report, Bureau voor Normalisatie: Brussels, Belgium

  17. Nielsen CP (2019) Visco-elastic back-calculation of traffic speed deflectometer measurements. Transp Res Rec 2673(12):439–448

    Article  Google Scholar 

  18. Standaardbestek 250 versie 3.1. (2019) Technical report, Agentschap Wegen en Verkeer

  19. NBN EN 12697-35 (2016) Bituminous mixtures-test methods-part 35: Laboratory mixing, Technical report, Bureau voor Normalisatie: Brussels, Belgium

  20. NBN EN 12697-31 (2007) Bituminous mixtures-test methods for hot mix asphalt-part 31: Specimen preparation by gyratory compactor, Technical report, Bureau voor Normalisatie: Brussels, Belgium

  21. Hasheminejad N, Vuye C, Van den BW, Dirckx J, Vanlanduit S (2018) A comparative study of laser doppler vibrometers for vibration measurements on pavement materials. Infrastructures 3(4):47

    Article  Google Scholar 

  22. Rothberg S, Allen M, Castellini P, Di Maio D, Dirckx J, Ewins D, Halkon B, Muyshondt P, Paone N, Ryan T, Steger H, Tomasini E, Vanlanduit S, Vignola J (2016) An international review of laser Doppler vibrometry: making light work of vibration measurement. Opt Lasers Eng 99:11–22

    Article  Google Scholar 

  23. Vuye C, Vanlanduit S, Guillaume P (2009) Accurate estimation of normal incidence absorption coefficients with confidence intervals using a scanning laser Doppler vibrometer. Opt Lasers Eng 47(6):644–650

    Article  Google Scholar 

  24. Pedersen L, Hjorth PG, Knudsen K (2013) Viscoelastic modelling of road deflections for use with the traffic speed deflectometer. Ph.D. thesis, Technical University of Denmark

  25. Burak GA, Agar E, Hilmi LA (2006) Advances in backcalculating the mechanical properties of flexible pavements. Adv Eng Softw 37(7):421–431

    Article  Google Scholar 

  26. Lei L (2011) Backcalculation of asphalt concrete complex modulus curve by layered viscoelastic solution. Ph.D. thesis, Michigan State University

  27. Gudmarsson A, Ryden N, Di Benedetto H, Sauzeat C (2015) Complex modulus and complex Poisson’s ratio from cyclic and dynamic modal testing of asphalt concrete. Constr Build Mater 88:20–31

    Article  Google Scholar 

  28. Kutay ME, Chatti K, Lei L (2011) Backcalculation of dynamic modulus mastercurve from falling weight deflectonieter surface deflections. Transp Res Rec J Transp Res Board 3(2227):87–96

    Article  Google Scholar 

  29. Gudmarsson A, Ryden N, Birgisson B (2012) Characterizing the low strain complex modulus of asphalt concrete specimens through optimization of frequency response functions. J Acoust Soc Am 132(4):2304–2312

    Article  Google Scholar 

  30. Peeters B, Auweraer HVD, Guillaume P, Leuridan J (2004) The PolyMAX frequency-domain method : a new standard for modal parameter estimation? Shock Vib 11:395–409

    Article  Google Scholar 

  31. Peeters B, Lowet G, Van der Auweraer H, Leuridan J (2004) A new procedure for modal parameter estimation. Sound Vib 38(1):24–29

    Google Scholar 

  32. Gudmarsson A (2014) Resonance testing of asphalt concrete. Ph.D. thesis, KTH Royal Institute of Technology

  33. Medani TO, Huurman M (2003) Constructing the stiffness master curves for asphaltic mixes, Technical report, Delft University of Technology, Delft

  34. Olard F, Di Benedetto H (2003) General 2S2P1D model and relation between the linear viscoelastic behaviours of bituminous binders and mixes. Road Mater Pavement Des 4(2):185–224

    Google Scholar 

  35. Carret J-C, Pedraza A, Di Benedetto H, Sauzeat C (2018) Comparison of the 3-dim linear viscoelastic behavior of asphalt mixes determined with tension-compression and dynamic tests. Constr Build Mater 174:529–536

    Article  Google Scholar 

  36. Havriliak S, Negami S (1966) A complex plane analysis of α-dispersions in some polymer systems. J Polymer Sci Part C Polym Symposia 14(1):99–117

    Article  Google Scholar 

  37. Madigosky WM, Lee GF, Niemiec JM (2006) A method for modeling polymer viscoelastic data and the temperature shift function. J Acoust Soc Am 119(6):3760–3765

    Article  Google Scholar 

  38. Williams ML, Landel RF, Dino FJ (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707

    Article  Google Scholar 

  39. Ren WX, Chen HB (2010) Finite element model updating in structural dynamics by using the response surface method. Eng Struct 32(8):2455–2465

    Article  Google Scholar 

  40. Steenackers G (2008) Finite Element Model Updating and Optimization of Mechanical Systems Making Use of Regressive Techniques, Ph.D. thesis, Vrije Universiteit Brussel

Download references

Acknowledgements

The authors would like to thank the research council of the Faculty of Applied Engineering for granting this project funded by the Everdepoel legacy. A great appreciation is also given to Agentschap Wegen en Verkeer (AWV) and Delft University of Technology for production and cutting of the reference samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Hasheminejad.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasheminejad, N., Vuye, C., Margaritis, A. et al. Identification of the viscoelastic properties of an asphalt mixture using a scanning laser Doppler vibrometer. Mater Struct 53, 131 (2020). https://doi.org/10.1617/s11527-020-01567-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-020-01567-9

Keywords

Navigation