Skip to main content
Log in

Optimizing conical nozzle of venturi ejector in ejector loop reactor using computational fluid dynamics

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The structure of a conical nozzle is critical to the gas induction of a venturi ejector. In this work, the effect of nozzle structure on the gas induction was investigated by means of multiphase CFD and validating experiments. Under different structures, the maximal gas induction was obtained through analyzing the nozzle outlet velocity (NOV), nozzle inlet velocity (NIV), as well as nozzle shrinking angle (NSA). The simulated inlet pressure is positively proportional to inlet flow rate, which is in good agreement with experimental results. The simulated results reveal that the inlet pressure and gas induction increase with the increasing NOV. Considering the operational characteristics of centrifugal pump, the recommended NOV is about 21.8 m/s. NIV and NSA show little impact on gas induction and inlet pressure. Based on the pipeline energy consumption, the recommended NIV is the same as the outlet velocity of centrifugal pump. The recommended NSA is about 20o to obtain the maximal gas induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Gao, X. Gao, D. Hong, Y. Cheng, L. Wang and X. Li, AIChE J., 65, 16537 (2019).

    Article  Google Scholar 

  2. J. Poissonnier, J.W Thybaut and G.B. Marin, AIChE J., 63, 111 (2017).

    Article  CAS  Google Scholar 

  3. Q. Chu, P. Wang, G. He, M. Li, H. Zhu, R. Liu and F. Pei, Chem. Eng. J, 325, 169 (2017).

    Article  CAS  Google Scholar 

  4. Z. Khan and J. B. Joshi, Chem. Eng. Sci, 127, 323 (2015).

    Article  CAS  Google Scholar 

  5. W Ludwig, R. G. Szafran, A. Kmiec and J. Dziak, Pro. Eng;, 42, 1157 (2012).

    Article  Google Scholar 

  6. C. S. Mathpati, S. S. Deshpande and J. B. Joshi, AIChE J., 55, 2526 (2009).

    Article  CAS  Google Scholar 

  7. Y. Gao, D. Hong, Y Cheng, L. Wang and X. Li, Chem. Eng. Res. Des, 141, 66 (2019).

    Article  CAS  Google Scholar 

  8. S. Weber, S. Schaepe, S. Freyer, M.-H. Kopf and C. Dietzsch, Chem. Eng. Process, 131, 43 (2018).

    Article  CAS  Google Scholar 

  9. L. L. V Dierendonck, Ind. Eng. Chem. Res., 37, 734 (1998).

    Article  Google Scholar 

  10. J. Esteban, H. Warmeling and A. J. Vorholt, Chem. Ing. Tech., 91, 560 (2019).

    Article  CAS  Google Scholar 

  11. H. Warmeling, D. Janz, M. Peters and A. J. Vorholt, Chem. Eng. J., 330, 585 (2017).

    Article  CAS  Google Scholar 

  12. J. Poissonnier, J. W. Thybaut and G. B. Marin, Ind. Eng. Chem. Res., 56, 14192 (2017).

    Article  CAS  Google Scholar 

  13. M. Di Serio, R. Tesser and E. Santacesaria, Ind. Eng. Chem. Res., 44, 9482 (2005).

    Article  CAS  Google Scholar 

  14. H. Warmeling, A. Behr and A. J. Vorholt, Chem. Eng. Sci., 149, 229 (2016).

    Article  CAS  Google Scholar 

  15. G. M. Evans, A. K. Bin and P. M. Machniewski, Chem. Eng. Sci., 56, 1151 (2001).

    Article  CAS  Google Scholar 

  16. P. Havelka, V. Linek, J. Sinkule, J. Zahradnik and M. Fialova, Chem. Eng. Sci., 55, 535 (2000).

    Article  CAS  Google Scholar 

  17. D. V. Sharma, A. W. Patwardhan and V. V. Ranade, Chem. Eng. Res. Des., 125, 24 (2017).

    Article  CAS  Google Scholar 

  18. Y. K. Kim, D. Y. Lee, H. D. Kim, J. H. Ahn and K. C. Kim, J. Mech. Sci. Technol., 26, 2773 (2012).

    Article  Google Scholar 

  19. X. Song, M. Cao, W Shin, W Cao, S. Kang and Y. Park, Math. Probl. Eng., 2014, 1 (2014).

    Google Scholar 

  20. D. Sharma, A. Patwardhan and V Ranade, Energy, 164, 10 (2018).

    Article  Google Scholar 

  21. K. Zhang, X. Zhu, X. Ren, Q. Qiu and S. Shen, Appl. Therm. Eng., 126, 594 (2017).

    Article  CAS  Google Scholar 

  22. W. Chen, H. Chen, C. Shi, K. Xue, D. Chong and J. Yan, Appl. Therm. Eng., 99, 476 (2016).

    Article  Google Scholar 

  23. C. Li, Y Li and L. Wang, Appl. Therm. Eng., 48, 237 (2012).

    Article  CAS  Google Scholar 

  24. C. Li and Y. Z. Li, Chem. Eng. Sci., 66, 405 (2011).

    Article  CAS  Google Scholar 

  25. E. Bumrungthaichaichan, Korean J. Chem. Eng., 33, 3050 (2016).

    Article  CAS  Google Scholar 

  26. G. Yuan, L. Zhang, H. Zhang and Z. Wang, Desalination, 276, 89 (2011).

    Article  CAS  Google Scholar 

  27. M. T. Kandakure, V. G. Gaikar and A. W. Patwardhan, Chem. Eng. Sci., 60, 6391 (2005).

    Article  CAS  Google Scholar 

  28. P. Zheng, B. Li and J. Qin, Energy, 155, 1129 (2018).

    Article  CAS  Google Scholar 

  29. G. Singh, T. Sundararajan and K. A. Bhaskaran, J. Fluids Eng., 125, 652 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds for the Central Universities (2020QN51).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, E., Jiang, X. & Ding, L. Optimizing conical nozzle of venturi ejector in ejector loop reactor using computational fluid dynamics. Korean J. Chem. Eng. 37, 1829–1835 (2020). https://doi.org/10.1007/s11814-020-0607-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0607-1

Keywords

Navigation