Skip to main content
Log in

Adsorption isotherms and kinetics for the removal of cationic dye by Cellulose-based adsorbent biocomposite films

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Various fillers (commercial, nipa palm, sisal activated carbon, zeolite) were incorporated with regenerated cellulose matrix that dissolved using lithium chloride/N, N-dimethylacetamide solution. The biosorbent films were successfully prepared via solution casting and then characterized by Fourier transform infrared spectrometer (FTIR), X-ray Diffractometer (XRD), thermogravimetric analyzer (TGA), and scanning electron microscope (SEM). The biocomposite films with embedded commercial activated carbon exhibited the largest adsorption capacity of methylene blue (146.81 mg g−1). Although the adsorption ability of the nipa palm and sisal activated carbon biocomposite was lower than the commercial activated carbon biosorbent film, both nipa palm and sisal activated carbon still could potentially be used as an alternative filler for cationic dye removal. On the contrary, zeolite had low adsorption efficiency owing to its morphology. The equilibrium adsorption experiment revealed that the Langmuir isotherm model best fitted the biocomposite films with commercial and sisal activated carbon, whereas the Freundlich adsorption model suited the biosorbent films with nipa palm activated carbon and zeolite than other models. The kinetics results of adsorption for all biocomposite films were well described using a pseudo-second-order kinetic model. The cellulose/activated carbon films would be promisingly utilized as a biosorbent for treatment of dye-contaminated wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Du and P. Zheng, Korean J. Chem. Eng., 31, 2051 (2014).

    CAS  Google Scholar 

  2. Q. Huang, M. Liu, J. Chen, K. Wang, D. Xu, F. Deng, H. Huang, X. Zhang and Y. Wei, J. Mater. Sri., 51, 8116 (2016).

    CAS  Google Scholar 

  3. M. Song, Z. Duan, R. Qin, X. Xu, S. Liu, S. Song, M. Zhang, Y. Li and J. Shi, Korean J. Chem. Eng., 36, 869 (2019).

    CAS  Google Scholar 

  4. Q. Li, Y Zhao, L. Wang and W. Aiqin, Korean J. Chem. Eng., 28, 1658 (2011).

    CAS  Google Scholar 

  5. A. A. Sabri, T. M. Albayati and R. A. Alazawi, Korean J. Chem. Eng., 32, 1835 (2015).

    CAS  Google Scholar 

  6. A. K. Bhakta, S. Kumari, S. Hussain, P. Martis, R. J. Mascarenhas, J. Delhalle and Z. Mekhalif, J. Mater. Sci., 54, 200 (2019)

    CAS  Google Scholar 

  7. K. Mahmoudi, K. Hosni, N. Hamdi and E. Srasra, Korean J. Chem. Eng., 32, 274 (2015).

    CAS  Google Scholar 

  8. G. Zhu, X. Xing, J. Wang and X. Zhang, J. Mater. Sci., 52, 7664 (2017).

    CAS  Google Scholar 

  9. Y. Zhou, L. Zhang and Z. Cheng, J. Mol. Liq, 212, 739 (2015).

    CAS  Google Scholar 

  10. T. Kan, V. Strezov and T. J. Evans, Renew. Sustain. Energy Rev, 57, 1126 (2016).

    CAS  Google Scholar 

  11. Y. Shen, Renew. Sustain. Energy Rev., 43, 281 (2015).

    CAS  Google Scholar 

  12. X. Cui, H. Hao, Z. He, P. J. Stoffella and X. Yang, J. Environ. Manage, 173, 95 (2016).

    CAS  PubMed  Google Scholar 

  13. Y Lee, J. Park, C. Ryu, K S. Gang, W Yang, Y. K. Park, J. Jung and S. Hyun, Bioresour. Technol., 148, 196 (2013).

    CAS  PubMed  Google Scholar 

  14. E. Agrafioti, G. Bouras, D. Kalderis and E. Diamadopoulos, J. Anal. Appl. Pyrolysis, 101, 72 (2013).

    CAS  Google Scholar 

  15. S.-H. Kong, S.-K. Loh, R. T. Bachmann, S. A. Rahim and J. Salimon, Renew. Sustain. Energy Rev., 39, 729 (2014).

    CAS  Google Scholar 

  16. F. Nestler, L. Burhenne, M. J. Amtenbrink and T. Aicher, Fuel Process. Technol, 145, 31 (2016).

    CAS  Google Scholar 

  17. J. Tang, W. Zhu, R. Kookana and A. Katayama, J. Biosci. Bioeng., 116, 653 (2013).

    CAS  PubMed  Google Scholar 

  18. A. Trubetskaya, P. A. Jensen, P. D. Jensen, M. Steibel, H. Spliethoff and P. Glarborg, Fuel Process. Technol, 140, 205 (2015).

    CAS  Google Scholar 

  19. A. Trubetskaya, P. A. Jensen, P. D. Jensen, A. D. G. Llamas, K. Umeki and P. Glarborg, Fuel Process. Technol., 143, 118 (2016).

    CAS  Google Scholar 

  20. J.J. Manya, F.X. Roca and J.F. Perales, J. Anal. Appl. Pyrolysis, 103, 86 (2013).

    CAS  Google Scholar 

  21. P. Satyamurthy and N. Vigneshwaran, Enzyme Micro. Technol., 52, 20 (2013).

    CAS  Google Scholar 

  22. T. Lin, E. Goos and U. Riedel, Fuel Process. Technol., 115, 246 (2013).

    CAS  Google Scholar 

  23. C. Miao and W. Y. Hamad, Cellulose, 20, 2221 (2013).

    CAS  Google Scholar 

  24. M. Ghaderi, M. Mousavi, H. Yousefi and M. Labbafi, Carbohydr. Polym., 104, 59 (2014).

    CAS  PubMed  Google Scholar 

  25. T. Pullawan, A. N. Wilkinson and S. J. Eichhorn, J. Mater. Sci., 48, 7847 (2013).

    CAS  Google Scholar 

  26. N. Soykeabkaew, N. Arimoto, T. Nishino and T. Peijs, Compos. Sci. Technol., 68, 2201 (2008).

    CAS  Google Scholar 

  27. N. Somsesta, V. Sricharoenchaikul and D. Aht-Ong, The 10th International Conference on Materials Science and Technology, Bangkok, Thailand (2018).

  28. V O. Njoku, K. Y Foo, M. Asif and B. H. Hameed, Chem. Eng. J., 250, 198 (2014).

    CAS  Google Scholar 

  29. C. Lu, C. Liu and G. P. Rao, J. Hazard. Mater., 151, 239 (2008).

    CAS  PubMed  Google Scholar 

  30. A. O. Dada, A. P. Olalekan, A. M. Olatunya and O. Dada, J. Appl Chem, 3, 38 (2012).

    Google Scholar 

  31. M. Li, Z. Wang and B. Li, Desalination Water Treat., 57, 16970 (2016).

    CAS  Google Scholar 

  32. X. Ma, C. Liu, D. P. Anderson and P. R. Chang, Chemosphere, 165, 399 (2016).

    CAS  PubMed  Google Scholar 

  33. P. Choeichom and A. Sirivat, Ionics, 24, 2829 (2018).

    CAS  Google Scholar 

  34. S. Das, S. P. Mahanta and K. K. Bania, RSC Adv., 4, 51496 (2014).

    CAS  Google Scholar 

  35. T. H. Liou, Chem. Eng. J., 158, 129 (2010).

    CAS  Google Scholar 

  36. N. Salahudeen, A.S. Ahmed, M. Dauda, S.M. Waziri, B.Y. Jibril and A. H. Al Muhtaseb, Aust. J. Ind. Res., 1, 10 (2014).

    Google Scholar 

  37. L. Muniandy, F. Adam, A. R. Mohamed and E. P. Ng, Micropor. Mesopor. Mater, 197, 316 (2014).

    CAS  Google Scholar 

  38. V. Hospodarova, E. Hospodarova and N. Stevulova, Am. J. Anal. Chem., 9, 303 (2018).

    CAS  Google Scholar 

  39. K. Nakasone, S. Ikematsu and T. Kobayashi, Ind. Eng. Chem. Res., 55, 30 (2016).

    CAS  Google Scholar 

  40. C. Qin, N. Soykeabkaew, N. Xiuyuan and T. Peijs, Carbohydr. Polym., 71, 458 (2008).

    CAS  Google Scholar 

  41. G. Liu, Z. Hu, R. Guan, Y. Zhao, H. Zhang and B. Zhang, Korean J. Chem. Eng., 33, 3141 (2016).

    CAS  Google Scholar 

  42. L. Liu, Z. Y. Gao, X. P. Su, X. Chen, L. Jiang and J. M. Yao, ACS Sustain. Chem. Eng., 3, 432 (2015).

    CAS  Google Scholar 

  43. B. C. Melo, A. A. Francisco, A. A. Paulino, V. A. Cardoso, A. G. B. Pereira, A. R. Fajardo and F. H. A. Rodrigues, Carbohydr. Polym., 181, 358 (2018).

    CAS  PubMed  Google Scholar 

  44. X. Luo and L. Zhang, J. Hazard. Mater, 171, 340 (2009).

    CAS  PubMed  Google Scholar 

  45. Z. Zaheer, W. A. Bawazir, S. M. Al-Bukhari and A. S. Basaleh, Mater. Chem. Phys, 232, 109 (2019).

    CAS  Google Scholar 

  46. J. C. Igwe and A. A. Abia Ecl Quím, 32, 33 (2007).

    CAS  Google Scholar 

  47. H. N. Tran, S. J. You, A. H. Bandegharaei and H. P. Chao, Water Res., 120, 88 (2017).

    CAS  PubMed  Google Scholar 

  48. Y. Pei, X. Wu, G. Xu, Z. Sun, X. Zheng, J. Liu and K. Tang, J. Chem. Technol. Biotechnol, 92, 1276 (2017).

    CAS  Google Scholar 

  49. S. Hajati, M. Ghaedi, B. Barazesh, F. Karimi, R. Sahraei, A. Daneshfar and A. Asghari, J. Ind. Eng. Chem., 20, 2421 (2014).

    CAS  Google Scholar 

  50. O. Gercel, A. Ozcan, A. S. Ozcan and H. Gercel, Appl. Surf. Sci., 253, 4843 (2007).

    CAS  Google Scholar 

  51. G. Li, W. Zhu, C. Zhang, S. Zhang, L. Liu, L. Zhu and W. Zhao, Bioresour. Technol., 206, 16 (2016).

    CAS  PubMed  Google Scholar 

  52. S. H. Siddiqui, Groundwat. Sustain. Dev., 6, 141 (2018).

    Google Scholar 

  53. A.S. Ibupoto, U.A. Qureshi, F. Ahmed, Z. Khatri, M. Khatri, M. Maqsood, R.Z. Brohi and I.S. Kim, Chem. Eng. Res. Des., 136, 744 (2018).

    CAS  Google Scholar 

  54. A. Gürses, C. Dogar, M. Yalcın, M. Acıkyldız, R. Bayrak and S. Karaca, J. Hazard. Mater, 131, 217 (2006).

    PubMed  Google Scholar 

  55. W. Y. Seow and C. A. E. Hauser, J. Environ. Chem. Eng., 4, 1714 (2016).

    CAS  Google Scholar 

  56. S. Ghorai, A. Sarkar, M. Raoufi, A. B. Panda, H. Schönherr and S. Pal, ACS Appl. Mater. Interfaces, 6, 4766 (2014).

    CAS  PubMed  Google Scholar 

  57. I. Ali, M. Asim and T. A. Khan, J. Environ. Manag., 113, 170 (2012).

    CAS  Google Scholar 

  58. A. H. Jawad and A. S. Abdulhameed, Surf. Interfaces, 18, 100422 (2020).

    CAS  Google Scholar 

  59. W. Konicki, M. Aleksandrzak, D. Moszynski and E. Mijowska, J. Colloid Interface Sci., 496, 188 (2017).

    CAS  PubMed  Google Scholar 

  60. A. K. Prajapati and M. K. Mondal, J. Mol. Liq., 307, 112949 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund [GCUGR1125622061D]) for financial support. One of the authors, N.S., would like to thank the scholarship from Science Achievement Scholarship of Thailand (SAST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duangdao Aht-Ong.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somsesta, N., Piyamawadee, C., Sricharoenchaikul, V. et al. Adsorption isotherms and kinetics for the removal of cationic dye by Cellulose-based adsorbent biocomposite films. Korean J. Chem. Eng. 37, 1999–2010 (2020). https://doi.org/10.1007/s11814-020-0602-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0602-6

Keywords

Navigation