Skip to main content

Advertisement

Log in

Increased Surface Broadband Emissivity Driven by Denser Vegetation on the Tibetan Plateau Grassland Area

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Global changes are profoundly affecting the global terrestrial ecosystems, especially for the vegetation. Simultaneously, the affected vegetation gives feedback to the climates. The Tibetan Plateau (TP), one of the most sensitive areas to global changes, has undergone extraordinary changes on its ecosystem processes. In the multitudinous land surface ecosystem processes affecting the climate, the process of land surface energy balance affecting by vegetation activity is one of the most important and still has not been well recognized. The spatial and temporal patterns of the broadband emissivity (BBE) on the TP and its relations to the vegetation activity and land surface temperature were examined in this research. We find that elevated BBE is regulated by increasing vegetation activity for grasslands over the TP from 2000 to 2015. The spatial patterns of BBE and its interannual changes are highly correlated with vegetation activity. The BBE changing rate generally declines along rising elevation, due to the shrunk effects from vegetation activity. A greater sensitivity of BBE to vegetation activity occurs in the sparse vegetation area or high elevation zone than in the dense vegetation area or low elevation zone. Increasing BBE has a cooling effect on the land surface, especially at night. This cooling effect is related to wind speed. The growing season BBE trend as regulated by vegetation activity highlights the importance to take mounting notice of the growing season long-wave energy fluxes of surface energy balance studies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bonan, G. B. (1995). Land atmosphere interactions for climate system models: coupling biophysical, biogeochemical, and ecosystem dynamical processes. Remote Sensing of Environment, 51(1), 57–73.

    Google Scholar 

  • Brandt, J. S., Haynes, M. A., Kuemmerle, T., Waller, D. M., & Radeloff, V. C. (2013). Regime shift on the roof of the world: alpine meadows converting to shrublands in the southern Himalayas. Biological Conservation, 158, 116–127.

    Google Scholar 

  • Caselles, E., Valor, E., Abad, F., & Caselles, V. (2012). Automatic classification-based generation of thermal infrared land surface emissivity maps using AATSR data over Europe. Remote Sensing of Environment, 124, 321–333.

    Google Scholar 

  • Chapin, F. S., Sturm, M., Serreze, M. C., Mcfadden, J. P., Key, J. R., Lloyd, A. H., et al. (2005). Role of land-surface changes in Arctic summer warming. Science, 310(5748), 657–660.

    Google Scholar 

  • Chen, B., Chao, W. C., & Liu, X. (2003). Enhanced climatic warming in the Tibetan Plateau due to doubling CO2: a model study. Climate Dynamics, 20(4), 401–413.

    Google Scholar 

  • Cheng, J., & Liang, S. L. (2014a). Effects of thermal-infrared emissivity directionality on Surface broadband emissivity and longwave net radiation estimation. IEEE Geoscience and Remote Sensing Letters, 11(2), 499–503.

    Google Scholar 

  • Cheng, J., & Liang, S. L. (2014b). Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product. Journal of Geophysical Research-Atmospheres, 119(2), 614–634.

    Google Scholar 

  • Cheng, J., Liang, S. L., Verhoef, W., Shi, L. P., & Liu, Q. (2016). Estimating the hemispherical broadband longwave emissivity of global vegetated surfaces using a radiative transfer model. IEEE Transactions on Geoscience and Remote Sensing, 54(2), 905–917.

    Google Scholar 

  • Cheng, J., Liang, S. L., Yao, Y. J., Ren, B. Y., Shi, L. P., & Liu, H. (2014). Comparative study of three land surface broadband emissivity datasets from satellite data. Remote Sensing, 6(1), 111–134.

    Google Scholar 

  • Cheng, J., Liang, S. L., Yao, Y. J., & Zhang, X. T. (2013). Estimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation. IEEE Geoscience and Remote Sensing Letters, 10(2), 401–405.

    Google Scholar 

  • Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., et al. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529–533.

    Google Scholar 

  • Cong, N., Shen, M. G., Piao, S. L., Chen, X. Q., An, S., Yang, W., et al. (2017a). Little change in heat requirement for vegetation green-up on the Tibetan Plateau over the warming period of 1998–2012. Agricultural and Forest Meteorology, 232, 650–658.

    Google Scholar 

  • Cong, N., Shen, M. G., Yang, W., Yang, Z. Y., Zhang, G. X., & Piao, S. L. (2017b). Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland. International Journal of Biometeorology, 61(8), 1433–1444.

    Google Scholar 

  • Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., & Totterdell, I. J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408(6809), 184–187.

    Google Scholar 

  • Diak, G. R., Bland, W. L., Mecikalski, J. R., & Anderson, M. C. (2000). Satellite-based estimates of longwave radiation for agricultural applications. Agricultural and Forest Meteorology, 103(4), 349–355.

    Google Scholar 

  • Didan, K. (2015). MOD13A1 MODIS/terra vegetation indices 16-Day L3 global 500m SIN grid V006 [Data set]. https://doi.org/10.5067/MODIS/MOD13A1.006. NASA EOSDIS LP DAAC. Accessed 28 Nov 2018

  • Ding, M. J., Li, L. H., Zhang, Y. L., Sun, X. M., Liu, L. S., Gao, J. G., et al. (2015). Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods based on GIMMS and SPOT NDVI data. Journal of Geographical Sciences, 25(2), 131–148.

    Google Scholar 

  • Duan, A. M., Wang, M. R., Lei, Y. H., & Cui, Y. F. (2013). Trends in summer rainfall over China Associated with the Tibetan Plateau sensible heat source during 1980–2008. Journal of Climate, 26(1), 261–275.

    Google Scholar 

  • Edwards, J. M. (2009). Radiative processes in the stable boundary layer: Part I. Radiative aspects. Boundary-Layer Meteorology, 131(2), 105–126.

    Google Scholar 

  • Fang, Y., Cheng, W. M., Zhang, Y. C., Wang, N., Zhao, S. M., Zhou, C. H., et al. (2016). Changes in inland lakes on the Tibetan Plateau over the past 40 years. Journal of Geographical Sciences, 26(4), 415–438.

    Google Scholar 

  • Feng, S., & Hu, Q. (2005). Regulation of Tibetan Plateau heating on variation of Indian summer monsoon in the last two millennia. Geophysical Research Letters, 32(2), L02702.

    Google Scholar 

  • Fu, G., Li, S. W., Sun, W., & Shen, Z. X. (2016). Relationships between vegetation carbon use efficiency and climatic factors on the Tibetan Plateau. Canadian Journal of Remote Sensing, 42(1), 16–26.

    Google Scholar 

  • Gui, J., Phelan, P. E., Kaloush, K. E., & Golden, J. S. (2007). Impact of pavement thermophysical properties on surface temperatures. Journal of Materials in Civil Engineering, 19(8), 683–690.

    Google Scholar 

  • He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y. Y., et al. (2020). The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data. https://doi.org/10.1038/s41597-020-0369-y.

    Article  Google Scholar 

  • Hu, T., Cao, B., Du, Y. M., Li, H., Wang, C., Bian, Z. J., et al. (2017). Estimation of surface upward longwave radiation using a direct physical algorithm. IEEE Transactions on Geoscience and Remote Sensing, 55(8), 4412–4426.

    Google Scholar 

  • Hulley, G. C., Hook, S. J., Abbott, E., Malakar, N., Islam, T., & Abrams, M. (2015). The ASTER global emissivity dataset (ASTER GED): mapping earth's emissivity at 100 meter spatial scale. Geophysical Research Letters, 42(19), 7966–7976.

    Google Scholar 

  • Hulley, G. C., Hook, S. J., & Baldridge, A. M. (2009). Validation of the North American ASTER land surface emissivity database (NAALSED) version 2.0 using pseudo-invariant sand dune sites. Remote Sensing of Environment, 113(10), 2224–2233.

    Google Scholar 

  • Hulley, G. C., Hook, S. J., & Baldridge, A. M. (2010). Investigating the effects of soil moisture on thermal infrared land surface temperature and emissivity using satellite retrievals and laboratory measurements. Remote Sensing of Environment, 114(7), 1480–1493.

    Google Scholar 

  • Jacob, F., Petitcolin, F., Schmugge, T., Vermote, E., French, A., & Ogawa, K. (2004). Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors. Remote Sensing of Environment, 90(2), 137–152.

    Google Scholar 

  • Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., & Fawcett, P. J. (2013). Terrestrial water fluxes dominated by transpiration. Nature, 496(7445), 347–350.

    Google Scholar 

  • Jiao, Z. H., Yan, G. J., Zhao, J., Wang, T. X., & Chen, L. (2015). Estimation of surface upward longwave radiation from MODIS and VIIRS clear-sky data in the Tibetan Plateau. Remote Sensing of Environment, 162, 221–237.

    Google Scholar 

  • Kang, S. C., Xu, Y. W., You, Q. L., Flugel, W. A., Pepin, N., & Yao, T. D. (2010). Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 5(1), 8.

    Google Scholar 

  • Kerr, Y. H., Waldteufel, P., Richaume, P., Wigneron, J. P., Ferrazzoli, P., Mahmoodi, A., et al. (2012). The SMOS soil moisture retrieval algorithm. IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1384–1403.

    Google Scholar 

  • Klein, C., Bliefernicht, J., Heinzeller, D., Gessner, U., Klein, I., & Kunstmann, H. (2017). Feedback of observed inter-annual vegetation change: a regional climate model analysis for the West African monsoon. Climate Dynamics, 48(9–10), 2837–2858.

    Google Scholar 

  • Liu, X. D., & Chen, B. D. (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20(14), 1729–1742.

    Google Scholar 

  • Nerry, F., Labed, J., & Stoll, M. P. (1990). Spectral properties of land surfaces in the thermal infrared: 2. Field method for spectrally averaged emissivity measurements. Journal of Geophysical Research-Solid Earth and Planets, 95(B5), 7045–7054.

    Google Scholar 

  • Nishida, K., Nemani, R. R., Running, S. W., & Glassy, J. M. (2003). An operational remote sensing algorithm of land surface evaporation. Journal of Geophysical Research-Atmospheres, 108(D9), 14.

    Google Scholar 

  • Oleson, K. W., Bonan, G. B., & Feddema, J. (2010). Effects of white roofs on urban temperature in a global climate model. Geophysical Research Letters, 37, 7.

    Google Scholar 

  • Olioso, A., Soria, G., Sobrino, J., & Duchemin, B. (2007). Evidence of low land surface thermal infrared emissivity in the presence of dry vegetation. IEEE Geoscience and Remote Sensing Letters, 4(1), 112–116.

    Google Scholar 

  • Piao, S. L., Wang, X. H., Ciais, P., Zhu, B., Wang, T., & Liu, J. (2011). Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 17(10), 3228–3239.

    Google Scholar 

  • Reyes-Fox, M., Steltzer, H., Trlica, M. J., Mcmaster, G. S., Andales, A. A., Lecain, D. R., et al. (2014). Elevated CO2 further lengthens growing season under warming conditions. Nature, 510(7504), 259.

    Google Scholar 

  • Savitzky, A., & Golay, M. J. E. (1964). Smoothing + differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627–2000.

    Google Scholar 

  • Shen, M. G., Piao, S. L., Jeong, S. J., Zhou, L. M., Zeng, Z. Z., Ciais, P., et al. (2015). Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proceedings of the National Academy of Sciences of the United States of America, 112(30), 9299–9304.

    Google Scholar 

  • Shukla, J., & Mintz, Y. (1982). Influence of land-surface evapotranspiration on the earth’s climate. Science, 215(4539), 1498–1501.

    Google Scholar 

  • Smith, E. A., & Shi, L. (1992). Surface forcing of the infrared cooling profile over the Tibetan Plateau. Part I: Influence of relative longwave radiative heating at high altitude. Journal of the Atmospheric Sciences, 49(10), 805–822.

    Google Scholar 

  • Sobrino, J. A., Jimenez-Munoz, J. C., & Verhoef, W. (2005). Canopy directional emissivity: comparison between models. Remote Sensing of Environment, 99(3), 304–314.

    Google Scholar 

  • Sturm, M., Douglas, T., Racine, C., & Liston, G. E. (2005). Changing snow and shrub conditions affect albedo with global implications. Journal of Geophysical Research-Biogeosciences, 110(G1), 13.

    Google Scholar 

  • Tang, B. H., Shao, K., Li, Z. L., Wu, H., & Tang, R. (2015). An improved NDVI-based threshold method for estimating land surface emissivity using MODIS satellite data. International Journal of Remote Sensing, 36(19–20), 4864–4878.

    Google Scholar 

  • Tao, J., Zhang, Y. J., Dong, J. W., Fu, Y., Zhu, J. T., Zhang, G. L., et al. (2015). Elevation-dependent relationships between climate change and grassland vegetation variation across the Qinghai-Xizang Plateau. International Journal of Climatology, 35(7), 1638–1647.

    Google Scholar 

  • Tao, J., Zhang, Y. J., Zhu, J. T., Jiang, Y. B., Zhang, X. Z., Zhang, T., et al. (2014). Elevation-dependent temperature change in the Qinghai-Xizang Plateau grassland during the past decade. Theoretical and Applied Climatology, 117(1–2), 61–71.

    Google Scholar 

  • Tian, L., Zhang, Y. J., & Zhu, J. T. (2014). Decreased surface albedo driven by denser vegetation on the Tibetan Plateau. Environmental Research Letters, 9(10), 11.

    Google Scholar 

  • Valor, E., & Caselles, V. (1996). Mapping land surface emissivity from NDVI: application to European, African, and South American areas. Remote Sensing of Environment, 57(3), 167–184.

    Google Scholar 

  • Vandegriend, A. A., & Owe, M. (1993). On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. International Journal of Remote Sensing, 14(6), 1119–1131.

    Google Scholar 

  • Vandegriend, A. A., Owe, M., Groen, M., & Stoll, M. P. (1991). Measurement and spatial variation of thermal infrared surface emissivity in a savanna environment. Water Resources Research, 27(3), 371–379.

    Google Scholar 

  • Wan, Z., Hook, S., Hulley, G. (2015). MOD11C1 MODIS/Terra land surface temperature/emissivity daily L3 global 0.05Deg CMG V006 [Data set]. NASA EOSDIS land processes DAAC. https://doi.org/10.5067/MODIS/MOD11C2.006. Accessed from 19 Aug 2020.

  • Wang, D. D., Morton, D., Masek, J., Wu, A. S., Nagol, J., Xiong, X. X., et al. (2012). Impact of sensor degradation on the MODIS NDVI time series. Remote Sensing of Environment, 119, 55–61.

    Google Scholar 

  • Wang, J., Zhang, M. J., Wang, S. J., Ren, Z. G., Che, Y. J., Qiang, F., et al. (2016). Decrease in snowfall/rainfall ratio in the Tibetan Plateau from 1961 to 2013. Journal of Geographical Sciences, 26(9), 1277–1288.

    Google Scholar 

  • Wang, K. C., Liu, J. M., Zhou, X. J., Sparrow, M., Ma, M., Sun, Z., et al. (2004). Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan Plateau. Journal of Geophysical Research-Atmospheres, 109(D5), 10.

    Google Scholar 

  • Wang, S. Y., Zhang, B., Yang, Q. C., Chen, G. S., Yang, B. J., Lu, L. L., et al. (2017). Responses of net primary productivity to phenological dynamics in the Tibetan Plateau, China. Agricultural and Forest Meteorology, 232, 235–246.

    Google Scholar 

  • Wu, G. X., Liu, Y. M., He, B., Bao, Q., Duan, A. M., & Jin, F. F. (2012). Thermal controls on the Asian summer monsoon. Scientific Reports, 2, 7.

    Google Scholar 

  • Xi, Y., Zhang, T., Zhang, Y. J., Zhu, J. T., Zhang, G. L., & Jiang, Y. B. (2015). Nitrogen addition alters the phenology of a dominant alpine plant in northern Tibet. Arctic Antarctic and Alpine Research, 47(3), 511–518.

    Google Scholar 

  • Xu, X. D., Lu, C. G., Ding, Y. H., Shi, X. H., Guo, Y. D., & Zhu, W. H. (2013). What is the relationship between China summer precipitation and the change of apparent heat source over the Tibetan Plateau? Atmospheric Science Letters, 14(4), 227–234.

    Google Scholar 

  • Yang, K., He, J., China Meteorological Forcing Dataset. (1979–2018). National Tibetan Plateau Data Center, 2018. https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file. CSTR: 18046.11. AtmosphericPhysics.tpe.249369.file.

  • Yang, K., He, J., Tang, W. J., Qin, J., & Cheng, C. C. K. (2010). On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the Tibetan Plateau. Agricultural and Forest Meteorology, 150(1), 38–46.

    Google Scholar 

  • Yang, K., Wu, H., Qin, J., Lin, C. G., Tang, W. J., & Chen, Y. Y. (2014). Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Global and Planetary Change, 112, 79–91.

    Google Scholar 

  • Yuan, X. L., Wang, W. F., Cui, J. J., Meng, F. H., Kurban, A., & De Maeyer, P. (2017). Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central Asia. Scientific Reports, 7, 8.

    Google Scholar 

  • Zeng, Z. Z., Piao, S. L., Li, L. Z. X., Zhou, L. M., Ciais, P., Wang, T., et al. (2017). Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, 7(6), 432–436.

    Google Scholar 

  • Zhang, G. L., Zhang, Y. J., Dong, J. W., & Xiao, X. M. (2013). Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4309–4314.

    Google Scholar 

  • Zhang, Y., Li, B., & Zheng, D. (2002). A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 21(1), 1–8.

    Google Scholar 

  • Zhang, Y. J., Yu, G. R., Yang, J., Wimberly, M. C., Zhang, X. Z., Tao, J., et al. (2014). Climate-driven global changes in carbon use efficiency. Global Ecology and Biogeography, 23(2), 144–155.

    Google Scholar 

  • Zhao, L., Li, Y. N., Xu, S. X., Zhou, H. K., Gu, S., Yu, G. R., et al. (2006). Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan Plateau. Global Change Biology, 12(10), 1940–1953.

    Google Scholar 

  • Zhao, Z. L., Zhang, Y. L., Liu, L. S., Liu, F. G., & Zhang, H. F. (2015). Recent changes in wetlands on the Tibetan Plateau: a review. Journal of Geographical Sciences, 25(7), 879–896.

    Google Scholar 

  • Zheng, D. (1996). The system of physico-geographical regions of the Qinghai-Xizang (Tibet) Plateau. Science in China Series D-Earth Sciences, 39(4), 410–417.

    Google Scholar 

  • Zhou, L., Dickinson, R. E., Tian, Y., Jin, M., Ogawa, K., Yu, H., et al. (2003). A sensitivity study of climate and energy balance simulations with use of satellite-derived emissivity data over Northern Africa and the Arabian Peninsula. Journal of Geophysical Research-Atmospheres, 108(D24), 9.

    Google Scholar 

  • Zhou, L. M., Dickinson, R., Dirmeyer, P., Chen, H. S., Dai, Y. J., & Tian, Y. H. (2008). Asymmetric response of maximum and minimum temperatures to soil emissivity change over the Northern African Sahel in a GCM. Geophysical Research Letters, 35(5), 6.

    Google Scholar 

  • Zhou, L. M., Dickinson, R. E., Tian, Y. H., Vose, R. S., & Dai, Y. J. (2007). Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region: Application to the Sahel. Proceedings of the National Academy of Sciences of the United States of America, 104(46), 17937–17942.

    Google Scholar 

  • Zhu, G. F., Su, Y. H., Li, X., Zhang, K., & Li, C. B. (2013). Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan Plateau using a two-source model and parameter uncertainty analysis by Bayesian approach. Journal of Hydrology, 476, 42–51.

    Google Scholar 

  • Zhuo, H. F., Liu, Y. M., & Jin, J. M. (2015). Improvement of land surface temperature simulation over the Tibetan Plateau and the associated impact on circulation in East Asia. Atmosphere Science Letters, 17(2), 162–168.

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Strategic Priority Research of the Chinese Academy of Sciences (XDA19070303) and Science and Technology Major Project of the Tibet Autonomous Region (Z2016C01G01/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Cong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4349 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, Y., Huang, K. et al. Increased Surface Broadband Emissivity Driven by Denser Vegetation on the Tibetan Plateau Grassland Area. J Indian Soc Remote Sens 48, 1845–1859 (2020). https://doi.org/10.1007/s12524-020-01195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01195-4

Keywords

Navigation