Skip to main content
Log in

Research on the effect of structural and material parameters on vibrations based on quasi-static model of bearings

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Variable compliance vibration is an inevitable source of the parametrically excited factors of rolling bearing–rotor system under the effect of only a limited number of rolling elements to carry the loads. Based on the quasi-static model of ball bearing, the mechanism of time-varying stiffness is studied and the effects of external load, rotational speed, geometric structure of the bearing and material parameters on the time-varying stiffness and relative variation of stiffness are analyzed quantitatively. Results show that load redistribution in bearing caused by the change of ball spatial position is the direct cause of the time-varying stiffness. Rotational speed, the number of balls and diameter have great effect on varying compliance vibration compared with external load and material parameters. In order to reduce the vibration, axial preload, contact angle, ball diameter and density should be appropriately increased, raceway groove curvature radius and radial load should be reduced, and the optimal number balls and rotational speed can be obtained according to the single-variable optimization method. The results provide theoretical basis for the structural design, material and manufacturing process selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53

Similar content being viewed by others

Abbreviations

F :

Applied load

M :

Moment

δ :

Bearing displacement

θ :

Bearing misalignment

N :

Number of rolling elements

D b :

Ball nominal diameter

d m :

Pitch diameter

α o :

Free contact angle

d i :

Inner raceway contact diameter

d e :

Outer raceway contact diameter

Δ:

Diametric clearance

ρ :

Mass density

K i, K e :

Load–deflection constant

l i, l e :

Distance between ball and groove centers

u :

Inner raceway cross section displacement vector

x, y, z :

Bearing Cartesian coordinate system

F c :

Centrifugal force

M g :

Gyroscopic moment

Q i, Q e :

Normal ball load

δ i, δ e :

Normal contact deformation

α i, α e :

Contact angle

ω s :

Rotational speed of the shaft

ω c :

Rotational speed of the cage

ω R :

Speed of ball about its own axis

ψ j :

Azimuth angle of j-th ball

λ i, λ e :

Raceway control parameters

R ψj :

Transformation matrix

β :

Ball attitude angle

v :

Rolling element displacement

z:

Axial direction

i:

Inner raceway

r:

Radial direction

e:

Outer raceway

References

  1. Cao H, Niu L, Xi S, Chen X (2018) Mechanical model development of rolling bearing-rotor systems: a review. Mech Syst Signal Process 102:37–58

    Article  Google Scholar 

  2. Bai XT, An D, Zhang K (2020) On the circumferential distribution of ceramic bearing sound radiation. J Braz Soc Mech Sci Eng 42:84. https://doi.org/10.1007/s40430-019-2164-2

    Article  Google Scholar 

  3. Wang H, Han Q, Luo R, Qing T (2017) Dynamic modeling of moment wheel assemblies with nonlinear rolling bearing supports. J Sound Vib 406:124–145

    Article  Google Scholar 

  4. Wu C, Feng F, Wu S et al (2019) A method for constructing rolling bearing lifetime health indicator based on multi-scale convolutional neural networks. J Braz Soc Mech Sci Eng 41:526. https://doi.org/10.1007/s40430-019-2010-6

    Article  Google Scholar 

  5. Liu J, Shao Y (2018) Overview of dynamic modelling and analysis of rolling element bearings with localized and distributed faults. Nonlinear Dyn 93(4):1765–1798

    Article  Google Scholar 

  6. Yu K, Lin T, Ma H, Li H, Zeng J (2020) A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery. IEEE Trans Instrum Meas 69(4):1505–1518

    Article  Google Scholar 

  7. Cheng H, Zhang Y, Lu W et al (2019) A bearing fault diagnosis method based on VMD-SVD and Fuzzy clustering. Int J Pattern Recognit Artif Intell 33(12):1950018

    Article  Google Scholar 

  8. Xiao C, Tang H (2020) Elastohydrodynamic lubrication characteristics of surface-textured slipper bearing in an axial piston pump. J Braz Soc Mech Sci Eng 42:199. https://doi.org/10.1007/s40430-020-02282-w

    Article  Google Scholar 

  9. Momono T, Noda B (1999) Sound and vibration in rolling bearings. Motion Control 6:29–37

    Google Scholar 

  10. Gianluca D, Marco C, Emiliano M (2018) An algorithm for the simulation of faulted bearings in non-stationary conditions. Meccanica 53:1147–1166. https://doi.org/10.1007/s11012-017-0767-1

    Article  MathSciNet  Google Scholar 

  11. Zhang H, Bai C, Mao Y (2015) Stochastic finite element modeling and response analysis of rotor systems with random properties under random loads. J Mech Sci Technol 29(8):3083–3090

    Article  Google Scholar 

  12. Zhang T, Chen X, Gu J, Wang Z (2018) Influences of preload on the friction and wear properties of high-speed instrument angular contact ball bearings. Chin J Aeronaut 31(3):597–607

    Article  Google Scholar 

  13. Cao H, Li Y, He Z, Zhu Y (2014) Time varying bearing stiffness and vibration response analysis of high speed rolling bearing-rotor systems. J Mech Eng 50(15):73–81

    Article  Google Scholar 

  14. Liu J, Shao Y, Zhu WD (2015) A new model for the relationship between vibration characteristics caused by the time-varying contact stiffness of a deep groove ball bearing and defect sizes. ASME J Tribol 137(3):031101

    Article  Google Scholar 

  15. Fang B, Zhang J, Yan K, Hong J, Yu W (2019) A comprehensive study on the speed-varying stiffness of ball bearing under different load conditions. Mech Mach Theory 136:1–13

    Article  Google Scholar 

  16. Zhang X, Han Q, Peng Z, Chu F (2013) Stability analysis of a rotor–bearing system with time-varying bearing stiffness due to finite number of balls and unbalanced force. J Sound Vib 332(25):6768–6784

    Article  Google Scholar 

  17. Tabrizi AA, Al-Bugharbee H, Trendafilova I, Garibaldi L (2017) A cointegration-based monitoring method for rolling bearings working in time-varying operational conditions. Meccanica 52(4–5):1201–1217

    Article  Google Scholar 

  18. Cheng H, Zhang Y, Lu W et al (2019) Research on time-varying stiffness of bearing based on local defect and varying compliance coupling. Measurement 143:155–179

    Article  Google Scholar 

  19. Zhang Z, Chen Y, Cao Q (2015) Bifurcations and hysteresis of varying compliance vibrations in the primary parametric resonance for a ball bearing. J Sound Vib 350:171–184

    Article  Google Scholar 

  20. Yu J, Li S, Chen X, He L, Yuan W (2019) Dynamic parameter analysis of spindle bearing using 3-Dimension quasi-dynamic model. Math Probl Eng 3:1–15

    Article  Google Scholar 

  21. Zhang G, Tong B, Zhang X et al (2020) Thermo-hydrodynamic modeling and analysis for circular bilayer self-lubricating bearing. J Braz Soc Mech Sci Eng 42:18. https://doi.org/10.1007/s40430-019-2100-5

    Article  Google Scholar 

  22. Wu C, Xiong R, Ni J et al (2020) Effect of grease on bearing vibration performance caused by short-time high-temperature exposure. J Braz Soc Mech Sci Eng 42:69. https://doi.org/10.1007/s40430-019-2126-8

    Article  Google Scholar 

  23. Cheng H, Zhang Y, Lu W et al (2019) Research on ball bearing model based on local defects. SN Appl Sci 1:1219

    Article  Google Scholar 

  24. Hertz H (1880) On the contact of elastic solids. J Reine Angew Math 92:156–171

    MATH  Google Scholar 

  25. Stribeck R (1907) Ball bearings for various loads. Trans ASME 29:420–463

    Google Scholar 

  26. Palmgren A (1946) Ball and roller bearing engineering. SKF Industries Inc., Philadelphia

    Google Scholar 

  27. Sunnersjö CS (1978) Varying compliance vibrations of rolling bearings. J Sound Vib 58(3):363–373

    Article  Google Scholar 

  28. Lim TC, Singh R (1990) Vibration transmission through rolling element bearings, part-I: bearing stiffness formulation. J Sound Vib 139(2):179–199

    Article  Google Scholar 

  29. Liew HV, Lim TC (2005) Analysis of time-varying rolling element bearing characteristics. J Sound Vib 283(3):1163–1179

    Article  Google Scholar 

  30. Jones AB (1960) A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions. J Basic Eng 82(2):309–320

    Article  Google Scholar 

  31. Harris TA, Kotzalas MN (2006) Advanced concepts of bearing technology: rolling bearing analysis, 5th edn. CRC Press, Boca Raton

    Book  Google Scholar 

  32. Li X, Yu K, Ma H et al (2018) Analysis of varying contact angles and load distributions in defective angular contact ball bearing. Eng Fail Anal 91:449–464

    Article  Google Scholar 

  33. Wang W, Hu L, Zhang S et al (2014) Modeling angular contact ball bearing without raceway control hypothesis. Mech Mach Theory 82:154–172

    Article  Google Scholar 

  34. Bai C, Zhang H, Xu Q (2008) Effects of axial preload of ball bearing on the nonlinear dynamic characteristics of a rotor-bearing system. Nonlinear Dyn 53(3):173–190

    Article  Google Scholar 

  35. Sheng X, Li B, Wu Z, Li H (2014) Calculation of ball bearing speed-varying stiffness. Mech Mach Theory 81:166–180

    Article  Google Scholar 

  36. Guo Y, Parker RG (2012) Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model. Mech Mach Theory 51:32–45

    Article  Google Scholar 

  37. Cheng H, Zhang Y, Lu W et al (2020) Research on mechanical characteristics of fault-free bearings based on centrifugal force and gyroscopic moment. Arch Appl Mech. https://doi.org/10.1007/s00419-020-01714-2

    Article  Google Scholar 

  38. Cheng H, Zhang Y, Lu W et al (2020) Reliability sensitivity analysis based on stress-strength model of bearing with random parameters. Rev Sci Instrum 91(7):073908

    Article  Google Scholar 

  39. Mul J, Vree JM, Maas DA (1989) Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction-part i: general theory and application to ball bearings. J Tribol 111(1):142–148

    Article  Google Scholar 

  40. Harris TA (2001) Rolling bearing analysis. Wiley, New York

    Google Scholar 

  41. Zhang Y, Cheng H, Lu W, Yang Z (2021) Effect of inertia forces on contact state of ball bearing with local defect in outer raceway. J Test Eval 49(1):20190770. https://doi.org/10.1520/JTE20190770

    Article  Google Scholar 

  42. Guo TN, Ma XC, Liu ZF et al (2015) Research on the effect of interference fit in the dynamic characteristics of high-speed angular contact ball bearing. Comput Intell Ind Appl, vol 365. CRC Press, Boca Raton, pp 305–311

Download references

Acknowledgements

We would like to express our appreciation to Key Project of Guangdong Education Department of China (2018KZDXM075) and Program for Innovative Research Team in University of Guangdong Education Department of China (2018KCXTD032) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Marcelo Areias Trindade.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Zhang, Y., Lu, W. et al. Research on the effect of structural and material parameters on vibrations based on quasi-static model of bearings. J Braz. Soc. Mech. Sci. Eng. 42, 578 (2020). https://doi.org/10.1007/s40430-020-02659-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02659-x

Keywords

Navigation