Skip to main content

Advertisement

Log in

Evaluation of geogenic cadmium bioavailability in soil-rice system with high geochemical background caused by black shales

  • Soils, Sec 4 • Ecotoxicology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Recently, the cadmium (Cd) accumulation in the black shale area has attracted increasing attentions, due to its extensive distribution and extremely high background values. The aim of our study is to explore the impacts of soil properties on Cd uptake by rice, and identify the key factors of Cd transfer from soil to rice in the black shale area.

Materials and methods

A total of 40 pairs of topsoil and rice samples were collected from the paddy fields in the black shale area and the control area. The relevant parameters in the soils, as well as the Cd concentrations in different rice tissues, were analyzed.

Results and discussion

The results show that 87.5% of the soil samples in the study area exceed the risk screening values of Cd, and 42% of the rice grain samples exceed the allowable limit of Cd. The key factor influencing Cd uptake by rice in this area is the soil phytoavailable Cd concentration. Compared to those in the control area, the soils in the black shale area have a much higher Cd level but a lower phytoavailability due to the higher pH, which is caused by carbonate. Even so, the level of Cd in the rice from the black shale area indicates a much higher ecological risk.

Conclusions

Soil pH and iron (Fe) are the most important variables exhibiting direct effects on Cd fractions in soils. In light of the neutral or weakly alkaline soil in the black shale area, we concluded that increasing the soil pH was not a feasible way to reduce Cd levels in the rice in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5

Similar content being viewed by others

References

  • Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotox Environ Safe 119:186–197

    CAS  Google Scholar 

  • Adriano D (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer, Berlin

    Google Scholar 

  • Alexakis D, Gamvroula D, Theofili E (2019) Environmental availability of potentially toxic elements in an agricultural Mediterranean site. Environ Eng Geosci 25(2):169–178

    Google Scholar 

  • Antoniadis V, Robinson J, Alloway B (2008) Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere 71(4):759–764

    CAS  Google Scholar 

  • Breiman (2001) Random forests. Mach Learn 45: 5–32

  • Brown S, Chaney R, Hallfrisch J, Ryan J, Berti W (2004) In situ soil treatments to reduce the phyto-and bioavailability of lead, zinc, and cadmium. J Environ Qual 33(2):522–531

    CAS  Google Scholar 

  • Cai D (2000) Study on silicon nutrition in China and silicon application. Yellow River Conservancy Press, Zhengzhou, China

    Google Scholar 

  • Derkowski A, Marynowski L (2018) Binding of heavy metals by oxidised kerogen in (palaeo)weathered black shales. Chem Geol 493:441–450

    CAS  Google Scholar 

  • Duan Y, Yang Z, Yu T, Yang Q, Liu X, Ji W, Jiang H, Zhou X, Wu T, Qin J, Wang L (2020) Geogenic cadmium pollution in multi-medians caused by black shales in Luzhai, Guangxi. Environ Pollut 260:113905

    CAS  Google Scholar 

  • Fan W, Xu Z, Wang W (2014) Metal pollution in a contaminated bay: relationship between metal geochemical fractionation in sediments and accumulation in a polychaete. Environ Pollut 191:50–57

    CAS  Google Scholar 

  • Fru E, Hemmingsson C, Callac N, Perez N, Panova E, Broman C, Albani A (2016) Atmospheric weathering of Scandinavian alum shales and the fractionation of C, N and S isotopes. Appl Geochem 74:94–108

    CAS  Google Scholar 

  • Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, AReich A, Groneberg D (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1(22):1186

    Google Scholar 

  • Gregory D, Large R, Halpin J et al (2015) Trace element content of sedimentary pyrite in black shales. Econ Geol 110(6):1389–1410

    Google Scholar 

  • Gu H, Qiu H, Tian T et al (2011) Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere 83(9):1234–1240

    CAS  Google Scholar 

  • Guo F, Ding C, Zhou Z, Huang G, Wang X (2018) Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation. Ecotox Environ Safe 148:303–310

    CAS  Google Scholar 

  • Hu D, Wei Z, Liu R, Fan Z, Han J (2019) Development characteristics and exploration potential of the lower carboniferous black shale in the Guizhong depression. Nat Gas Ind B 6(3):205–214

    Google Scholar 

  • Hu Y, Cheng H, Tao S (2016) The challenges and solutions for cadmium-contaminated Rice in China: a critical review. Environ Int 92-93:515–532

    CAS  Google Scholar 

  • Hu Y, Norton G, Duan G, Huang Y, Liu Y (2014) Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants. Plant Soil 384(1–2):131–140

    CAS  Google Scholar 

  • Jiao W, Chen W, Chang A, Page A (2012) Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environ Pollut 168:44–53

    CAS  Google Scholar 

  • Ke S, Cheng X, Zhang N et al (2015) Cadmium contamination of rice from various polluted areas of China and its potential risks to human health. Environ Moni A 187(7):408

    Google Scholar 

  • Kim Y, Khan A, Kim D et al (2014) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol 14(1):13

    Google Scholar 

  • Kördel W, Bernhardt C, Derz K, Hund-Rinke K, Harmsen J, Peijnenburg W, Comans R, Terytze K (2013) Incorporating availability/bioavailability in risk assessment and decision making of polluted sites, using Germany as an example. J Hazard Mater 261:854–862

    Google Scholar 

  • Kosolsaksakul P, Farmer J, Oliver I, Graham M (2014) Geochemical associations and availability of cadmium (cd) in a paddy field system, northwestern Thailand. Environ Pollut 187:153–161

    CAS  Google Scholar 

  • Kubier A, Wilkin R, Pichler T (2019) Cadmium in soils and groundwater: a review. Appl Geochem 108:104388

    CAS  Google Scholar 

  • Li F, Wang X, Zhou S, Liu C (2006) Reviews on abiotic transformation of organchlorines on the interface of iron oxides and water in red soil colloids. Ecol Environ 15:1343–1351

    Google Scholar 

  • Li H, Luo N, Li Y et al (2017) Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures. Environ Pollut 224:622–630

    CAS  Google Scholar 

  • Liang X, Han J, Xu Y et al (2014) In situ field-scale remediation of cd polluted paddy soil using sepiolite and palygorskite. Geoderma 235:9–18

    Google Scholar 

  • Liang X, Ning X, Chen G, Lin M, Liu J, Wang Y (2013) Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants. Ecotox Environ Safe 98:128–134

    CAS  Google Scholar 

  • Liu D, Zhang C, Chen X, Yang Y, Wang S, Li Y, Hu H, Ge Y, Cheng W (2013a) Effects of pH, Fe, and cd on the uptake of Fe2+ and Cd2+ by rice. Environ Sci Pollut Res 20(12):8947–8954

    CAS  Google Scholar 

  • Liu J, Ma J, He C, Li X, Zhang W, Xu F, Lin Y, Wang L (2013b) Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of silicon. New Phytol 200(3):691–699

    CAS  Google Scholar 

  • Liu Y, Xiao T, Perkins R, Zhu J, Zhu Z, Xiong Y, Ning Z (2017) Geogenic cadmium pollution and potential health risks, with emphasis on black shale. J Geochem Explor 176:42–49

    CAS  Google Scholar 

  • Ma J, Cai H, He C, Zhang W, Wang L (2015) A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol 206(3):1063–1074

    CAS  Google Scholar 

  • McBride M (2002) Cadmium uptake by crops estimated from soil total cd and pH. Soil Sci 167(1):62–67

    CAS  Google Scholar 

  • McLennan S (1993) Weathering and global denudation. J Geol 101(2):295–303

    Google Scholar 

  • Meharg A, Norton G, Deacon C et al (2013) Variation in rice cadmium related to human exposure. Environ Sci Technol 47(11):5613–5618

    CAS  Google Scholar 

  • Meharg C, Meharg A (2015) Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exp Bot 120:8–17

    CAS  Google Scholar 

  • Meng L, Huang T, Shi J, Chen J, Zhong F, Wu L, Xu J (2019) Decreasing cadmium uptake of rice (Oryza sativa L.) in the cadmium-contaminated paddy field through different cultivars coupling with appropriate soil amendments. J Soils Sediments 19(4):1788–1798

    CAS  Google Scholar 

  • Mu T, Zhou T, Li Z, Hu P, Luo Y, Christie P, Wu L (2020) Prediction models for rice cadmium accumulation in Chinese paddy fields and the implications in deducing soil thresholds based on food safety standards. Environ Pollut 258:113879

    CAS  Google Scholar 

  • Nesbitt H, Young G (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299(5885):715–717

    CAS  Google Scholar 

  • Ngoc Nguyen M, Dultz S, Guggenberger G (2014) Effects of pretreatment and solution chemistry on solubility of rice-straw phytoliths. J Plant Nutr Soil Sci 177(3):349–359

    Google Scholar 

  • Peng B, Song Z, Tu X, Lv H, Wu F (2004) Release of heavy metals during weathering of the lower-Cambrian black shales in western Hunan, China. Environ Geol 45(8):1137–1147

    CAS  Google Scholar 

  • Peng B, Song Z, Yu C et al (2014) Geochemistry of major and trace elements, and Pb isotopes during weathering of black shales of the lower-Cambrian black shales in Central Hunan, China. Appl Geochem 51:191–203

    CAS  Google Scholar 

  • Pietrzykowski M, Socha J, van Doorn N (2014) Linking heavy metal bioavailability (cd, cu, Zn and Pb) in scots pine needles to soil properties in reclaimed mine areas. Sci Total Environ 470-471:501–510

    CAS  Google Scholar 

  • Rafiq M, Aziz R, Yang X et al (2014) Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotox Environ Safe 103:101–107

    CAS  Google Scholar 

  • Rehman M, Rizwan M, Ali S, Fatima N, Yousaf B, Naeem A, Sabir M, Raza Ahmad H, Sik Ok Y (2016) Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotox environ safe 133: 218

  • Rizwan M, Meunier J, Miche H, Keller C (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mater 209-210:326–334

    CAS  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016a) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23(18):17859–17879

    CAS  Google Scholar 

  • Rizwan M, Meunier J, Davidian J, Pokrovsky O, Bovet N, Keller C (2016b) Silicon alleviates cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ Sci Pollut Res 23(2):1414–1427

    CAS  Google Scholar 

  • Rodda M, Li G, Reid R (2011) The timing of grain cd accumulation in rice plants: the relative importance of remobilisation within the plant and root cd uptake post-flowering. Plant Soil 347(1–2):105–114

    CAS  Google Scholar 

  • Römkens P, Brus D, Guo H, Chu C, Chiang C, Koopmans G (2011) Impact of model uncertainty on soil quality standards for cadmium in rice paddy fields. Sci Total Environ 409(17):3098–3105

    Google Scholar 

  • Sarwar N, Malhi S, Zia M, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agr 90(6):925–937

    CAS  Google Scholar 

  • Siebers N, Siangliw M, Tongcumpou C (2013) Cadmium uptake and subcellular distribution in rice plants as affected by phosphorus: soil and hydroponic experiments. J Soil Sci Plant Nut 13(4):833–844

    Google Scholar 

  • Thawornchaisit U, Polprasert C (2009) Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils. J Hazard Mater 165(1–3):1109–1113

    CAS  Google Scholar 

  • Tsukahara T, Ezaki T, Moriguchi J, Furuki K, Shimbo S, Matsuda-Inoguchi N, Ikeda M (2003) Rice as the most influential source of cadmium intake among general Japanese population. Sci Total Environ 305(1):41–51

    CAS  Google Scholar 

  • Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5(1):5

    Google Scholar 

  • Uraguchi S, Fujiwara T (2013) Rice breaks ground for cadmium-free cereals. Curr Opin Plant Biol 16(3):328–334

    CAS  Google Scholar 

  • Wang C, Hao J, Zhong C, Wang J, Sun M, Xie M (2020) Estimating the contribution of atmosphere on heavy metals accumulation in the aboveground wheat tissues induced by anthropogenic forcing. Environ Res 189:109955

    CAS  Google Scholar 

  • Wang F, Ouyang W, Hao F, Lin C, Song N (2014) In situ remediation of cadmium-polluted soil reusing four by-products individually and in combination. J Soils Sediments 14(3):451–461

    CAS  Google Scholar 

  • Wang H, Wen S, Chen P, Zhang L, Cen K, Sun G (2016) Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields. Environ Sci Pollut Res 23(4):3781–3788

    CAS  Google Scholar 

  • Wang P, Chen H, Kopittke P, Zhao F (2019) Cadmium contamination in agricultural soils of China and the impact on food safety. Environ Pollut 249:1038–1048

    CAS  Google Scholar 

  • Wang X, Li X, Ma R, Li Y, Wang W, Huang H, Xu C, An Y (2018) Quadratic discriminant analysis model for assessing the risk of cadmium pollution for paddy fields in a county in China. Environ Pollut 236:366–372

    CAS  Google Scholar 

  • Wen Y, Li W, Yang Z, Zhang Q, Ji J (2020a) Enrichment and source identification of cd and other heavy metals in soils with high geochemical background in the karst region, southwestern China. Chemosphere 245:125620

    CAS  Google Scholar 

  • Wen Y, Li W, Yang Z, Zhuo X, Guan DX, Song Y, Guo C, Ji J (2020b) Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, southwestern China. Environ Pollut 258:113645

    CAS  Google Scholar 

  • Williams P, Lei M, Sun G et al (2009) Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environ Sci Technol 43(3):637–642

    CAS  Google Scholar 

  • Wu J, Shi Y, Zhu Y, Wang Y, Gong H (2013) Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere 23(6):815–825

    CAS  Google Scholar 

  • Yang Q, Lan C, Wang H, Zhuang P, Shu W (2006) Cadmium in soil-rice system and health risk associated with the use of untreated mining wastewater for irrigation in Lechang, China. Agr Water Manage 84(1):147–152

    Google Scholar 

  • Yu H, Ding X, Li F et al (2016a) The availabilities of arsenic and cadmium in rice paddy fields from a mining area: the role of soil extractable and plant silicon. Environ Pollut 215:258–265

    CAS  Google Scholar 

  • Yu H, Liu C, Zhu J, Li F, Deng D, Wang Q, Liu C (2016b) Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environ Pollut 209:38–45

    CAS  Google Scholar 

  • Zhao F, Ma Y, Zhu Y, Tang Z, McGrath S (2015a) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49(2):750–759

    CAS  Google Scholar 

  • Zhao K, Fu W, Ye Z, Zhang C (2015b) Contamination and spatial variation of heavy metals in the soil-rice system in Nanxun County, southeastern China. Int J Env Res Pub He 12(2):1577–1594

    CAS  Google Scholar 

  • Zhao Y, Deng Q, Lin Q, Zeng C, Zhong C (2020) Cadmium source identification in soils and high-risk regions predicted by geographical detector method. Environ Pollut 263A:114338

    Google Scholar 

  • Zhou H, Zeng M, Zhou X, Liao BH, Peng PQ, Hu M, Zhu W, Wu YJ, Zou ZJ (2015) Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars. Plant Soil 386(1–2):317–329

    CAS  Google Scholar 

  • Zhu Z, Yao G, Lou Z, Jin A, Zhu R, Jin C, Chen C (2018) Upper Paleozoic marine shale characteristics and exploration prospects in the northwestern Guizhong depression, South China. J Ocean U China 17(4):773–790

    CAS  Google Scholar 

  • Zong Y, Xiao Q, Lu S (2016) Chemical fraction, leachability, and bioaccessibility of heavy metals in contaminated soils, Northeast China. Environ Sci Pollut Res 23(23):24107–24114

    Google Scholar 

  • Zwonitzer J, Pierzynski G, Hettiarachchi G (2003) Effects of phosphorus additions on lead, cadmium, and zinc bioavailabilities in a metal-contaminated soil. Water Air Soil Poll 143(1–4):193–209

    CAS  Google Scholar 

Download references

Acknowledgments

Special thanks are due to the responsible editor and two anonymous reviewers for their careful works and constructive comments. This study was financially supported by the National Natural Science Foundation of China (41867049, 41661085, 41761099, 41763004) and the Nature Sciences Foundation of Guangxi (2018GXNSFAA281263 and 2016GXNSFBA380106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Dong-Mei Zhou

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, C., Feng, Z., Jiang, W. et al. Evaluation of geogenic cadmium bioavailability in soil-rice system with high geochemical background caused by black shales. J Soils Sediments 21, 1053–1063 (2021). https://doi.org/10.1007/s11368-020-02802-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-020-02802-0

Keywords

Navigation