Skip to main content
Log in

Development of a radiochemical sequential procedure for the quantification of Th- and U-decay series elements in mining residues

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This article discusses a new complementary method for gamma spectrometry for the assessment of natural radioactivity in mining residues. The proposed analytical strategy allows us to determine if secular equilibrium is achieved in the sample with an HF-free dissolution process and a robust sequential radiochemical procedure for U, Th, Ra, Pb and Po isotopes. Various mineralization strategies were investigated on certified mining residues to completely dissolve both refractory (Th, U) and volatile (Po) species, either via open vessel or microwave-assisted acid digestion with nitric and hydrochloric acids followed by an alkaline fusion on the undissolved solids. Then 5 naturally occurring radioelements (Th, U, Ra, Pb and Po) present in the digested sample were separated with 3 stacked selective resins (TRU, Sr resin and HRa), from which they were individually eluted. The single loading step, composed of HCl/HNO3, was optimized to ensure selective retention onto the resins without the need to alter the loading matrix by varying the pH or adding salt, acid, or solvents. The 5 eluted solutions containing individual fractions of the desired elements could then be analyzed by either ICP-MS/MS or alpha spectrometry. More than 92% of each analyte were recovered in certified reference materials with the proposed procedure (dissolution and extraction).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cowart JB, Burnett WC (1994) The distribution of uranium and thorium decay-series radionuclides in the environment: a review. J Environ Qual 23:651

    Article  CAS  Google Scholar 

  2. Bourdon B, Turner S, Henderson GM, Lundstrom CC (2003) Introduction to U-series geochemistry. Rev Miner Geochem 52:1–21

    Article  CAS  Google Scholar 

  3. Larivière D, Guérin N (2010) Natural radioactivity. In: Atwood DA (ed) Radionuclides in the environment. Wiley, New York, pp 1–18

    Google Scholar 

  4. Gouvernement du Québec (2017) Radionucléides recommandés pour l’analyse de la radioactivité dans les matrices environnementales. ISBN 978-2-551-26088-1

  5. Gouvernement du Québec (2015) Règlement sur les matières dangereuses

  6. Carvalho FP, Madruga MJ, Reis MC et al (2007) Radioactivity in the environment around past radium and uranium mining sites of Portugal. J Environ Radioact 96:39–46

    Article  CAS  Google Scholar 

  7. Larivière D, Taylor VF, Evans RD, Cornett RJ (2006) Radionuclide determination in environmental samples by inductively coupled plasma mass spectrometry. Spectrochim Acta Part B At Spectrosc 61:877–904

    Article  Google Scholar 

  8. Baskaran KV, Blanchet-Chouinard G, Larivière D (2018) Attogram measurement of 210Pb in drinking water by ICP-MS/MS. J Anal At Spectrom 33:603–612

    Article  CAS  Google Scholar 

  9. Dalencourt C, Michaud A, Habibi A et al (2018) Rapid, versatile and sensitive method for the quantification of radium in environmental samples through cationic extraction and inductively coupled plasma mass spectrometry. J Anal At Spectrom 33:1031–1040

    Article  CAS  Google Scholar 

  10. Evans EH, Pisonero J, Smithc CMM, Taylord RN (2017) Atomic spectrometry update: review of advances in atomic spectrometry and related techniques. J Anal At Spectrom 32:869–889

    Article  CAS  Google Scholar 

  11. Lehto J, Hou X (2011) Separation methods. In: Chemistry and analysis of radionuclides. Wiley-VCH, New York, pp 57–128

  12. Godoy JM, Lauria DC, Cunha RP (1994) Developement of a sequential method for the determination of 238U, 234U, 232Th, 230Th, 228Th, 228Ra, 226Ra and 210Pb in environmental samples. J Radioanal Nucl Chem 182:165–169

    Article  CAS  Google Scholar 

  13. Lozano JC, Tomé FV, Blanco Rodriguez P, Prieto C (2010) A sequential method for the determination of 210Pb, 226Ra, and uranium and thorium radioisotopes by LSC and alpha-spectrometry. Appl Radiat Isot 68:828–831

    Article  CAS  Google Scholar 

  14. Blanco Rodriguez MP, Vera Tome F, Lozano JC, Gomez Escobar V (2000) Sequential method for the determination of uranium, thorium and 226Ra by liquid scintillation alpha spectrometry. Appl Radiat Isot 52:705–710

    Article  CAS  Google Scholar 

  15. Oliveira JM, Carvalho FP (2006) Sequential extraction procedure for determination of uranium, thorium, radium, lead and polonium radionuclides by alpha spectrometry in environmental samples. Czechoslov J Phys 56:545–555

    Article  Google Scholar 

  16. Dalencourt C, Chabane MN, Tremblay-Cantin JC, Larivière D (2020) A rapid sequential chromatographic separation of U- and Th-decay series radionuclides in water samples. Talanta 207:120282

    Article  CAS  Google Scholar 

  17. Miura T, Hayano K, Nakayama K (1999) Determination of 210Pb and 210Po in environmental samples by alpha ray spectrometry using an extraction chromatographic resin. Anal Sci 15:23–28

    Article  CAS  Google Scholar 

  18. Veal BW, Lam DJ (1974) X-ray photoelectron studies of thorium, uranium, and their dioxides. Phys Rev B 10:4902–4908

    Article  CAS  Google Scholar 

  19. Whitty-Léveillé L (2016) Développement d’une méthode d’analyse des éléments de terre rare (ETR) par ICP-MS/MS. MSc thesis, Université Laval, Québec, Canada

  20. Whitty-Léveillé L, Turgeon K, Bazin C, Larivière D (2017) A comparative study of sample dissolution techniques and plasma-based instruments for the precise and accurate quantification of REEs in mineral matrices. Anal Chim Acta. https://doi.org/10.1016/j.aca.2017.01.045

    Article  PubMed  Google Scholar 

  21. Maxwell SL, Hutchison JB, McAlister DR (2015) Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples. J Radioanal Nucl Chem 305:631–641

    Article  CAS  Google Scholar 

  22. Milliard A, Durand-Jézéquel M, Larivière D (2011) Sequential automated fusion/extraction chromatography methodology for the dissolution of uranium in environmental samples for mass spectrometric determination. Anal Chim Acta 684:40–46

    Article  CAS  Google Scholar 

  23. Croudace I, Warwick P, Taylor R, Dee S (1998) Rapid procedure for plutonium and uranium determination in soils using a borate fusion followed by ion-exchange and extraction chromatography. Anal Chim Acta 371:217–225

    Article  CAS  Google Scholar 

  24. Gascoyne M, Larocque JPA (1984) A rapid method of extraction of uranium and thorium from granite for alpha spectrometry. Nucl Instrum Methods Phys Res 223:250–252

    Article  CAS  Google Scholar 

  25. Seiner BN, Morley SM, Beacham TA, Haney MM, Gregory S, Metz L (2014) Effects of digestion, chemical separation, and deposition on Po-210 quantitative analysis. J Radioanal Nucl Chem 302:673–678

    Article  CAS  Google Scholar 

  26. Sanchez-Cabeza JA, Masque P, Ani-Ragolta I (1998) Pb-210 and Po-210 analysis in sediments and soils by microwave acid digestion. J Radioanal Nucl Chem 227:19–22

    Article  CAS  Google Scholar 

  27. Dean JR (2014) Environmental trace analysis: techniques and applications. Wiley, Chichester

    Google Scholar 

  28. O’Hara MJ, Maiti TC, Grate JW (2007) PNNL-16746: Microwave digestion method for dissolution of soils and sediments for recovery of actinides from environmental samples. PNNL, Richland

    Google Scholar 

  29. Douglas M, O’Hara MJ, Grate JW, Maiti T, Bellofatto D, Petersen S (2012) Plutonium isotopic analysis of standard reference materials. In: ACS National meeting, Philadelphia

  30. Horwitz EP, Chiarizia R, Dietz ML (1992) A novel strontium-selective extraction chromatographic resin. Solvent Extr Ion Exch 10:313–336

    Article  CAS  Google Scholar 

  31. Le T-H-H, Michel H, Champion J (2019) 210Po sequential extraction applied to wetland soils at uranium mining sites. J Environ Radioact 199:1–6

    Article  Google Scholar 

  32. IBC Advanced Technologies Analig Data Sheet: Ra-01

  33. Lupton DF, Merker J, Schölz F (1997) The correct use of platinum in the XRF laboratory. X-Ray Spectrom 26:132–140

    Article  CAS  Google Scholar 

  34. Habibi A, Cariou N, Boulet B, Cossonnet C, Gurriaran R, Gleizes M, Cote G, Lariviere D (2017) Automated chromatographic separation coupled on-line to ICP-MS measurements for the quantification of actinides and radiostrontium in soil samples. J Radioanal Nucl Chem 314:127–139

    Article  CAS  Google Scholar 

  35. Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Maxwell IIISL, Nelson MR (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion-exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310:63–78

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Steeve Roberge (CEAEQ), and to Jean-François Mercier, Michael W. Cooke, and Bonnie Todd (Radioprotection Bureau, Health Canada), for sharing their expertise regarding the quantification of radionuclides by alpha- and gamma-spectrometry, respectively. The authors would like to acknowledge Serge Groleau for his analytical support during the development of the separation procedure. Funding for this project was provided by Fonds de Recherche du Québec – Nature et Technologies – Développement Durable du Secteur Minier (FRQNT-DDSM, Grant # 2015-MI-190537).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Larivière.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalencourt, C., Tremblay-Cantin, JC. & Larivière, D. Development of a radiochemical sequential procedure for the quantification of Th- and U-decay series elements in mining residues. J Radioanal Nucl Chem 326, 1597–1607 (2020). https://doi.org/10.1007/s10967-020-07443-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07443-8

Keywords

Navigation