Skip to main content
Log in

An Approach to Observing and Quantifying Real-Time Mandibular Muscle Topology in the Trap-Jaw Ant Odontomachus monticola by Synchrotron Imaging

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

The ant Odontomachus monticola has a pair of elongated mandibles that can manipulate a variety of objects including food, brood and nestmates. Anatomical and theoretical studies indicate that different tasks may require modification of mandible speed and force which is achieved by modulating the respective activity of three sets of muscles. Despite the advanced investigations on how muscles separately control the mandible movements in trap-jaw ants, real-time visualization of the muscle activity has remained elusive. In this investigation, we developed an approach based on the synchrotron imaging technique to elucidate the real-time topology of the muscles in the head of the ant. Using synchrotron imaging, we described the topology of the living ant’s mandible muscles and calculated area changes in the intracranial muscles, which reflected the respective muscle’s activities in the strike of mandibles. This study provides the first visualization evidence which validates that the mandible strike is facilitated by the contraction of adductor muscles, without the activation of abductor muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ávila Núñez JL, Naya M, Calcagno-Pissarelli MP, Otero LD (2011) Behaviour of Odontomachus chelifer (Latreille) (Formicidae: Ponerinae) feeding on sugary liquids. J Insect Behav 24:220–229

    Article  Google Scholar 

  • Barkov LM, Baryshev VB, Kulipanov GN, Mezentsev NA, Pindyurin VF, Skrinsky AN, Khorev VM (1978) A proposal to install a superconducting wiggler magnet on the storage ring VEPP-3 for generation of the synchrotron radiation. Nucl Instrum Methods 152:23–29

  • Chen R, Liu P, Xiao T, Xu LX (2014) X-ray imaging for non-destructive microstructure analysis at SSRF. Adv Mater 26:7688–7691

    Article  CAS  Google Scholar 

  • De la Mora A, Pérez-Lachaud G, Lachaud J-P (2008) Mandible strike: the lethal weapon of Odontomachus opaciventris against small prey. Behav Process 78:64–75

    Article  Google Scholar 

  • Dejean A, Delabie JHC, Corbara B, Azémar F, Groc S, Orivel J, Leponce M (2012) The ecology and feeding habits of the arboreal trap-jawed ant Daceton armigerum. PLoS One 7:e37683

    Article  CAS  Google Scholar 

  • Emlen D (2008) The evolution of animal weapons. Annu Rev Ecol Evol Syst 39:387–413

    Article  Google Scholar 

  • Goyens J, Dirckx J, Dierick M, Van Hoorebeke L, Aerts P (2014) Biomechanical determinants of bite force dimorphism in Cyclommatus metallifer stag beetles. J Exp Biol 217:1065–1071

    Article  Google Scholar 

  • Gronenberg W (1995a) The fast mandible strike in the trap-jaw ant Odontomachus. J Comp Physiol A 176:399–408

    Article  Google Scholar 

  • Gronenberg W (1995b) The fast mandible strike in the trap-jaw ant Odontomachus. J Comp Physiol A 176:391–398

    Article  Google Scholar 

  • Gronenberg W (1996a) Fast actions in small animals: springs and click mechanisms. J Comp Physiol A 178:727–734

    Article  Google Scholar 

  • Gronenberg W (1996b) The trap-jaw mechanism in the dacetine ants Daceton armigerum and Strumigenys sp. J Exp Biol 199:2021

    CAS  PubMed  Google Scholar 

  • Gronenberg W, BrandÃO CRF, Dietz BH, Just S (1998) Trap-jaws revisited: the mandible mechanism of the ant Acanthognathus. Physiol Entomol 23:227–240

    Article  Google Scholar 

  • Gronenberg W, Paul J, Just S, Hölldobler B (1997) Mandible muscle fibers in ants: fast or powerful? Cell Tissue Res 289:347–361

    Article  CAS  Google Scholar 

  • Gronenberg W, Tautz J (1994) The sensory basis for the trap-jaw mechanism in the ant Odontomachus bauri. J Comp Physiol A 174:49–60

    Article  Google Scholar 

  • Gronenberg W, Tautz J, Hölldobler B (1993) Fast trap jaws and giant neurons in the ant Odontomachus. Science 262:561–563

    Article  CAS  Google Scholar 

  • Hao W, Yao G, Zhang X, Zhang D (2018) Kinematics and mechanics analysis of trap-jaw ant Odontomachus monticola. J Phys Conf Ser 986:012029

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Just S, Gronenberg W (1999) The control of mandible movements in the ant Odontomachus. J Insect Physiol 45:231–240

    Article  CAS  Google Scholar 

  • Larabee F, Suarez A (2014) The evolution and functional morphology of trap-jaw ants (Hymenoptera: Formicidae). Myrmecol News 20:25–36

    Google Scholar 

  • Larabee FJ, Gronenberg W, Suarez AV (2017) Performance, morphology and control of power-amplified mandibles in the trap-jaw ant (Hymenoptera: Formicidae). J Exp Biol 220:3062–3071

    Article  Google Scholar 

  • Larabee FJ, Suarez AV (2015) Mandible-powered escape jumps in trap-jaw ants increase survival rates during predator-prey encounters. PLoS One 10:e0124871

    Article  Google Scholar 

  • Matsuda A, Aonuma H, Kaneko Si (2020) A structural analysis based on kinetic model of trap-jaw in Odontomachus. In: Proceedings of the seventh Asia international symposium on mechatronics. Springer Singapore, Singapore, pp. 289–294

  • Matsuda A, Aonuma H, Naniwa K, Kaneko S (2018) Image-based measurement of ultra-fast movement of mandible in trap-jaw ants. In: 2018 12th France-Japan and 10th Europe-Asia congress on mechatronics. Pp 1-5

  • McCullough EL, Tobalske BW, Emlen DJ (2014) Structural adaptations to diverse fighting styles in sexually selected weapons. Proc Natl Acad Sci 111:14484–14488

    Article  CAS  Google Scholar 

  • Patek SN, Baio JE, Fisher BL, Suarez AV (2006) Multifunctionality and mechanical origins: ballistic jaw propulsion in trap-jaw ants. Proc Natl Acad Sci 103:12787–12792

    Article  CAS  Google Scholar 

  • Paul J (2001) Mandible movements in ants. Comp Biochem Physiol A 131:7–20

    Article  CAS  Google Scholar 

  • Paul J, Gronenberg W (1999) Optimizing force and velocity: mandible muscle fibre attachments in ants. J Exp Biol 202:797

    PubMed  Google Scholar 

  • Paul J, Gronenberg W (2002) Motor control of the mandible closer muscle in ants. J Insect Physiol 48:255–267

    Article  CAS  Google Scholar 

  • Socha JJ, Westneat MW, Harrison JF, Waters JS, Lee W-K (2007) Real-time phase-contrast x-ray imaging: a new technique for the study of animal form and function. BMC Biol 5:6

    Article  Google Scholar 

  • Sorger D, Zettel H (2011) On the ants (Hymenoptera: Formicidae) of the Philippine Islands: V. the genus Odontomachus Latreille, 1804. Myrmecol News 14:141–163

    Google Scholar 

  • Thomlinson W, Chapman D, Gmür N, Lazarz N (1988) The superconducting wiggler beamport at the National Synchrotron Light Source. Nucl Instrum Methods Phys Res Sect A-Accel Spectrom Dect Assoc Equip 266:226–233

    Article  Google Scholar 

  • Xie H, Deng B, Du G, Fu Y, He Y, Guo H, Peng G, Xue Y, Zhou G, Ren Y, Wang Y, Chen R, Tong Y, Xiao T (2013) X-ray biomedical imaging beamline at SSRF. J Instrum 8:C08003

    Article  Google Scholar 

  • Xu L, Chen R, Du G, Yang Y, Wang F, Deng B, Xie H, Xiao T (2016) Anisotropic shrinkage of insect air sacs revealed in vivo by X-ray microtomography. Sci Rep 6:32380

    Article  CAS  Google Scholar 

  • Zhang W, Li M, Zheng G, Guan Z, Wu J, Wu Z (2020) Multifunctional mandibles of ants: variation in gripping behavior facilitated by specific microstructures and kinematics. J Insect Physiol 120:103993

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research grant of Sun Yat-Sen University for Bairen Plan (grant no. 76200-18841223), and the National Natural Science Foundation of China (grant no. 51905556). We appreciated the X-ray Imaging and Biomedical Application Beamline (BL13W1) of Shanghai Synchrotron Radiation Facility (SSRF) for their assistance with the experiment of Synchrotron X-ray imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqiang Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Movie S1

High-Speed video of mandibles fast movements, filmed at 5 × 104frames per second (fps) and played at 30 fps. (MP4 2227 kb)

Movie S2

Muscle observation under the synchrotron imaging. (MP4 20,159 kb)

ESM 1

(DOCX 758 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, W., Wu, J. et al. An Approach to Observing and Quantifying Real-Time Mandibular Muscle Topology in the Trap-Jaw Ant Odontomachus monticola by Synchrotron Imaging. J Insect Behav 33, 174–183 (2020). https://doi.org/10.1007/s10905-020-09759-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-020-09759-5

Keywords

Navigation