Skip to main content
Log in

Quality Control of Additively Manufactured Metallic Structures with Machine Learning of Thermography Images

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) of high-strength metals is currently based on the laser powder bed fusion (LPBF) process, which can introduce internal material flaws, such as pores and anisotropy. Quality control (QC) requires nondestructive evaluation of actual AM structures. Flash thermography is a potentially promising QC technique because it is scalable to arbitrary structure size. However, the detection sensitivity of this method is limited by noise. We investigate separation of signal from noise in thermography images using several machine learning (ML) methods, including new spatial–temporal blind source separation and spatial–temporal sparse dictionary learning methods. Performance of the ML methods is benchmarked using thermography data obtained from imaging stainless steel 316L and Inconel 718 specimens produced by the LPBF method with imprinted calibrated porosity defects. The ML methods are ranked by F-score and execution runtime. The ML methods with higher accuracy require a longer runtime. However, this runtime is sufficiently short to perform QC within a realistic time frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Prog. Mater Sci. 92, 112–224 (2018).

    Google Scholar 

  2. X. Lou and D. Gandy, JOM 71, 2834–2836 (2019).

    Article  Google Scholar 

  3. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Acta Mater. 108, 36–45 (2016).

    Article  Google Scholar 

  4. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, Appl. Phys. Rev. 2, 041304 (2015).

    Article  Google Scholar 

  5. Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, and S.B. Tor, Mater. Des. 139, 565–586 (2018).

    Article  Google Scholar 

  6. R. Cunningham, R. Narra, S.P. Montgomery, C.J. Beuth, and A.D. Rollett, JOM 69, 479–484 (2017).

    Article  Google Scholar 

  7. C. Zhao, K. Fezzaa, R.W. Cunningham, H. Wen, F. De Carlo, L. Chen, A.D. Rollett, and T. Sun, Sci. Rep. 7, 3602 (2017).

    Article  Google Scholar 

  8. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315–360 (2016).

    Article  Google Scholar 

  9. J.J. Lewandowski and M. Seifi, Annu. Rev. Mater. Res. 46, 151–186 (2016).

    Article  Google Scholar 

  10. Q.Y. Lu and C.H. Wong, Virtual Phys. Prototyp. 12, 301–321 (2017).

    Article  MathSciNet  Google Scholar 

  11. L. Meng, B. Mcwilliams, W. Jarosinski, H.-Y. Park, Y.-G. Jung, J. Lee, and J. Zhang, JOM 72, 2363–2377 (2020).

    Article  Google Scholar 

  12. L. Meng and J. Zhang, JOM 72, 420–428 (2020).

    Article  MathSciNet  Google Scholar 

  13. X. Qi, G. Chen, Y. Li, X. Cheng, and C. Li, Engineering 5, 721–729 (2019).

    Article  Google Scholar 

  14. C. Goberta, E.W. Reutzelb, J. Petrichc, A.R. Nassarb, and S. Phohac, Additive Manuf. 21, 517–528 (2018).

    Article  Google Scholar 

  15. A. Thompson, I. Maskery, and R. Leach, Meas. Sci. Technol. 27, 072001 (2016).

    Article  Google Scholar 

  16. J. Raplee, A. Plotkowski, M.M. Kirka, R. Dinwiddie, A. Okello, R.R. Dehoff, and S.S. Babu, Sci. Rep. 7, 43554 (2017).

    Article  Google Scholar 

  17. S.D. Holland and R.S. Reusser, Ann. Rev. Mater. Res. 46, 287–303 (2016).

    Article  Google Scholar 

  18. A. Heifetz, D. Shribak, T. Liu, T.W. Elmer, P. Kozak, S. Bakhtiari, B. Khaykovich, and W. Cleary, Transactions of the American nuclear society 121, 589–591 (2019).

    Google Scholar 

  19. Q. Luo, B. Gao, W.L. Woo, and Y. Yang, NDT&E Int. 108, 102164 (2019).

    Article  Google Scholar 

  20. J.E. Siegel, M.F. Beemer, and S.M. Shepard, Additive Manuf. 31, 100923 (2020).

    Article  Google Scholar 

  21. X. Zhang, J. Saniie, A. Heifetz, Neural Learning Based Blind Source Separation for Detection of Material Defects in Pulsed Thermography Images, to appear in Proceedings of IEEE International Conference on Electro-Information Conference (EIT), (2020).

  22. T. DebRoy, W. Zhang, J. Turner, and S.S. Babu, Scripta Mater. 135, 119–124 (2017).

    Article  Google Scholar 

  23. C.S. Kim, ANL-75-55 (1975).

  24. D.G. Farwick and R.N. Johnson, HEDL-TME 79-6 (1980).

  25. G. Hinton and T. Sejnowski, eds., Unsupervised learning: Foundations of neural computation (Boston: MIT Press, 1999).

    Google Scholar 

  26. R. Xu and D. Wunsch, IEEE Trans. Neural Netw. 16, 645–678 (2005).

    Article  Google Scholar 

  27. K. Sikka and G. Sharma, IEEE Trans. Pattern Anal. Mach. Intell. 25, 1829–1844 (2017).

    Article  Google Scholar 

  28. Z.H. Lai, Y. Xu, Q.C. Chen, J. Yang, and D. Zhang, IEEE Trans. Neural Netw. Learn. Syst. 25, 1942–1950 (2014).

    Article  Google Scholar 

  29. J. Lucke, AS. Sheikh, Proceedings of International Conference on Latent Variable Analysis and Signal Separation 213–221 (2012).

  30. Y. Bengio, A. Courville, and P. Vincent, IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013).

    Article  Google Scholar 

  31. W. Q. Fan and W. S. Xiao, J. Eng. 6012–6015 (2019).

  32. N. Rajic, Compos. Struct. 58, 521–528 (2002).

    Article  Google Scholar 

  33. V. Strela and A. T. Walden, Imperial College, Statistics Section, London, U.K., Tech. Rep. TR-98-01 (1998).

  34. X. Zhang, T. Gonnot, and J. Saniie, J. Signal Inf. Process. 8, 99–112 (2017).

    Google Scholar 

  35. A. Hyvärinen, J. Neural Process. Lett. 10, 1–5 (1999).

    Article  Google Scholar 

  36. N. Y. Wang, T. S. Yao, J. D. Wang and D. Y. Yeung, European Conference on Computer Vision 126–139 (2012).

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Nuclear Energy, Nuclear Energy Enabling Technology (NEET) Advanced Methods of Manufacturing (AMM) program, under Contract DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Heifetz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Saniie, J., Cleary, W. et al. Quality Control of Additively Manufactured Metallic Structures with Machine Learning of Thermography Images. JOM 72, 4682–4694 (2020). https://doi.org/10.1007/s11837-020-04408-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04408-w

Navigation