Skip to main content
Log in

Down–regulating miR-217-5p Protects Cardiomyocytes against Ischemia/Reperfusion Injury by Restoring Mitochondrial Function via Targeting SIRT1

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Downregulating miR-217-5p could protect cardiomyocytes against ischemia/reperfusion (I/R) injury, but its role in restoring mitochondrial function of I/R-injured cardiomyocytes remained unclear. H9C2 cardiomyocyte-derived cell line with I/R injury was established in vitro on the basis of hypoxia/reperfusion (H/R) model. Cell viability and apoptosis were respectively detected by MTT assay and flow cytometry. Contents of lactate dehydrogenase (LDH) and adenosine triphosphate (ATP) were determined. Flow cytometry was performed to measure the production of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP). Target gene and potential binding sites between miR-217-5p and Sirtuin1 (SIRT1) were predicted by TargetScan and confirmed by dual-luciferase reporter assay. Relative SIRT1 and expressions of autophagy-related and apoptosis-related genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. After I/R treatment, the viability of H9C2 cardiomyocyte-derived cell line and ATP contents were reduced, but LDH and ROS contents were increased, at the same time, cell apoptosis and the expressions of miR-217-5p, p62 and cleaved caspase-3 were increased, whereas the expressions of SIRT1, LC3 (light chain 3), PINK1 (PTEN-induced kinase 1), Parkin, Bcl-2, and c-IAP (inhibitor of apoptosis protein) were reduced. However, downregulating miR-217-5p expression reversed the effects of I/R. SIRT1 was predicted and verified to be the target of miR-217-5p, and silencing SIRT1 reversed the effects of downregulating miR-217-5p on I/R-injured cells. Downregulating miR-217-5p could help restore mitochondrial function via targeting SIRT1, so as to protect cardiomyocytes against I/R-induced injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The analyzed data sets generated during the study are available from the corresponding author on reasonable request.

References

  1. Li, Z., Y. Zhang, N. Ding, Y. Zhao, Z. Ye, L. Shen, H. Yi, and Y. Zhu. 2019. Inhibition of lncRNA XIST improves myocardial I/R injury by targeting miR-133a through inhibition of autophagy and regulation of SOCS2. Molecular Therapy--Nucleic Acids 18: 764–773. https://doi.org/10.1016/j.omtn.2019.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu, Q., R. Wang, Y. Shi, W. Li, M. Li, P. Chen, B. Pan, Q. Wang, C. Li, J. Wang, G. Sun, X. Sun, and H. Fu. 2020. Synthesis and biological evaluation of panaxatriol derivatives against myocardial ischemia/reperfusion injury in the rat. European Journal of Medicinal Chemistry 185: 111729. https://doi.org/10.1016/j.ejmech.2019.111729.

    Article  CAS  PubMed  Google Scholar 

  3. Krol, J., I. Loedige, and W. Filipowicz. 2010. The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews. Genetics 11 (9): 597–610. https://doi.org/10.1038/nrg2843.

    Article  CAS  PubMed  Google Scholar 

  4. Fan, Zhi-Xing, and Jian Yang. 2015. The role of microRNAs in regulating myocardial ischemia reperfusion injury. Saudi Medical Journal 36 (7): 787–793. https://doi.org/10.15537/smj.2015.7.11089.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xiao, X., Z. Lu, V. Lin, A. May, D.H. Shaw, Z. Wang, B. Che, K. Tran, H. Du, and P.X. Shaw. 2018. MicroRNA miR-24-3p reduces apoptosis and regulates Keap1-Nrf2 pathway in mouse cardiomyocytes responding to ischemia/reperfusion injury. Oxidative Medicine and Cellular Longevity 2018: 7042105–7042109. https://doi.org/10.1155/2018/7042105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang, Z.Q., W. Xu, J.L. Wu, X. Lu, and X.M. Chen. 2019. MicroRNA-374a protects against myocardial ischemia-reperfusion injury in mice by targeting the MAPK6 pathway. Life Sciences 232: 116619. https://doi.org/10.1016/j.lfs.2019.116619.

    Article  CAS  PubMed  Google Scholar 

  7. Zhai, C., Q. Qian, G. Tang, B. Han, H. Hu, D. Yin, H. Pan, and S. Zhang. 2017. MicroRNA-206 protects against myocardial ischaemia-reperfusion injury in rats by targeting Gadd45beta. Molecules and Cells 40 (12): 916–924. https://doi.org/10.14348/molcells.2017.0164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nie, Xiang, Jiahui Fan, Huaping Li, Zhongwei Yin, Yanru Zhao, Beibei Dai, Nianguo Dong, Chen Chen, and Dao Wen Wang. 2018. miR-217 promotes cardiac hypertrophy and dysfunction by targeting PTEN. Molecular Therapy--Nucleic Acids 12: 254–266. https://doi.org/10.1016/j.omtn.2018.05.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xia, K., Y. Zhang, and D. Sun. 2020. miR217 and miR543 downregulation mitigates inflammatory response and myocardial injury in children with viral myocarditis by regulating the SIRT1/AMPK/NFkappaB signaling pathway. International Journal of Molecular Medicine 45 (2): 634–646. https://doi.org/10.3892/ijmm.2019.4442.

    Article  PubMed  Google Scholar 

  10. Li, Y., L. Fei, J. Wang, and Q. Niu. 2020. Inhibition of miR-217 protects against myocardial ischemia-reperfusion injury through inactivating NF-kappaB and MAPK pathways. Cardiovascular Engineering and Technology 11: 219–227. https://doi.org/10.1007/s13239-019-00452-z.

    Article  CAS  PubMed  Google Scholar 

  11. Herr, D. J., T. Singh, T. Dhammu, and D. R. Menick. 2020. Regulation of metabolism by mitochondrial enzyme acetylation in cardiac ischemia-reperfusion injury. Biochimica et biophysica acta. Molecular basis of disease 1866 (6):165728. https://doi.org/10.1016/j.bbadis.2020.165728.

  12. Chen, Hui, Ri-Sheng Huang, Xian-Xian Yu, Qiong Ye, Lu-Lu Pan, Guo-Jian Shao, and Jing Pan. 2017. Emodin protects against oxidative stress and apoptosis in HK-2 renal tubular epithelial cells after hypoxia/reoxygenation. Experimental and Therapeutic Medicine 14 (1): 447–452. https://doi.org/10.3892/etm.2017.4473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu, W., M. Xu, T. Zhang, Q. Zhang, and C. Zou. 2019. Mst1 promotes cardiac ischemia-reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy. The journal of physiological sciences : JPS 69 (1): 113–127. https://doi.org/10.1007/s12576-018-0627-3.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, Y.Y., D.J. Gong, J.J. Zhang, X.H. Liu, and L. Wang. 2019. Diabetes aggravates renal ischemia-reperfusion injury by repressing mitochondrial function and PINK1/Parkin-mediated mitophagy. American Journal of Physiology. Renal Physiology 317 (4): F852–F864. https://doi.org/10.1152/ajprenal.00181.2019.

    Article  CAS  PubMed  Google Scholar 

  15. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25 (4): 402–408. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  16. Lin, Q., S. Li, N. Jiang, X. Shao, M. Zhang, H. Jin, Z. Zhang, J. Shen, Y. Zhou, W. Zhou, L. Gu, R. Lu, and Z. Ni. 2019. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biology 26: 101254. https://doi.org/10.1016/j.redox.2019.101254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou, Hao, Shuyi Wang, Shunying Hu, Yundai Chen, and Jun Ren. 2018. ER-mitochondria microdomains in cardiac ischemia-reperfusion injury: A fresh perspective. Frontiers in Physiology 9: 755. https://doi.org/10.3389/fphys.2018.00755.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chistiakov, D.A., T.P. Shkurat, A.A. Melnichenko, A.V. Grechko, and A.N. Orekhov. 2018. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Annals of Medicine 50 (2): 121–127. https://doi.org/10.1080/07853890.2017.1417631.

    Article  CAS  PubMed  Google Scholar 

  19. Prag, Hiran A., Duvaraka Kula-Alwar, Timothy E. Beach, Anja V. Gruszczyk, Nils Burger, and Michael P. Murphy. 2020. Mitochondrial ROS production during ischemia-reperfusion injury. In Oxidative Stress, ed. Helmut Sies, 513–538. Academic Press.

  20. Liu, Z.Y., S.P. Hu, Q.R. Ji, H.B. Yang, D.H. Zhou, and F.F. Wu. 2017. Sevoflurane pretreatment inhibits the myocardial apoptosis caused by hypoxia reoxygenation through AMPK pathway: An experimental study. Asian Pacific Journal of Tropical Medicine 10 (2): 148–151. https://doi.org/10.1016/j.apjtm.2017.01.006.

    Article  CAS  PubMed  Google Scholar 

  21. Yu, H., Q. Guan, L. Guo, H. Zhang, X. Pang, Y. Cheng, X. Zhang, and Y. Sun. 2016. Gypenosides alleviate myocardial ischemia-reperfusion injury via attenuation of oxidative stress and preservation of mitochondrial function in rat heart. Cell Stress & Chaperones 21 (3): 429–437. https://doi.org/10.1007/s12192-016-0669-5.

    Article  CAS  Google Scholar 

  22. Bravo-San Pedro, J.M., G. Kroemer, and L. Galluzzi. 2017. Autophagy and mitophagy in cardiovascular disease. Circulation Research 120 (11): 1812–1824. https://doi.org/10.1161/CIRCRESAHA.117.311082.

    Article  CAS  PubMed  Google Scholar 

  23. Geisler, S., K.M. Holmstrom, D. Skujat, F.C. Fiesel, O.C. Rothfuss, P.J. Kahle, and W. Springer. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biology 12 (2): 119–131. https://doi.org/10.1038/ncb2012.

    Article  CAS  PubMed  Google Scholar 

  24. Lahuerta, M., C. Aguado, P. Sanchez-Martin, P. Sanz, and E. Knecht. 2018. Degradation of altered mitochondria by autophagy is impaired in Lafora disease. The FEBS Journal 285 (11): 2071–2090. https://doi.org/10.1111/febs.14468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tong, M., and J. Sadoshima. 2016. Mitochondrial autophagy in cardiomyopathy. Current Opinion in Genetics & Development 38: 8–15. https://doi.org/10.1016/j.gde.2016.02.006.

    Article  CAS  Google Scholar 

  26. Chen, S., L. Zhou, Y. Zhang, Y. Leng, X.Y. Pei, H. Lin, R. Jones, R.Z. Orlowski, Y. Dai, and S. Grant. 2014. Targeting SQSTM1/p62 induces cargo loading failure and converts autophagy to apoptosis via NBK/Bik. Molecular and Cellular Biology 34 (18): 3435–3449. https://doi.org/10.1128/MCB.01383-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, H., C. Dai, Y. Fan, B. Guo, K. Ren, T. Sun, and W. Wang. 2017. From autophagy to mitophagy: The roles of P62 in neurodegenerative diseases. Journal of Bioenergetics and Biomembranes 49 (5): 413–422. https://doi.org/10.1007/s10863-017-9727-7.

    Article  CAS  PubMed  Google Scholar 

  28. Hibshman, J.D., T.C. Leuthner, C. Shoben, D.F. Mello, D.R. Sherwood, J.N. Meyer, and L.R. Baugh. 2018. Nonselective autophagy reduces mitochondrial content during starvation in Caenorhabditis elegans. American Journal of Physiology. Cell Physiology 315 (6): C781–C792. https://doi.org/10.1152/ajpcell.00109.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tanaka, Keiji. 2020. The PINK1-Parkin axis: an overview. Neuroscience research. https://doi.org/10.1016/j.neures.2020.01.006.

  30. Favaloro, B., N. Allocati, V. Graziano, C. Di Ilio, and V. De Laurenzi. 2012. Role of apoptosis in disease. Aging (Albany NY) 4 (5): 330–349. https://doi.org/10.18632/aging.100459.

    Article  CAS  Google Scholar 

  31. Moon, D.O., S.Y. Park, M.S. Heo, K.C. Kim, C. Park, W.S. Ko, Y.H. Choi, and G.Y. Kim. 2006. Key regulators in bee venom-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of ERK and Akt. International Immunopharmacology 6 (12): 1796–1807. https://doi.org/10.1016/j.intimp.2006.07.027.

    Article  CAS  PubMed  Google Scholar 

  32. Brunelle, J.K., and A. Letai. 2009. Control of mitochondrial apoptosis by the Bcl-2 family. Journal of Cell Science 122 (Pt 4): 437–441. https://doi.org/10.1242/jcs.031682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuo, W.T., L. Shen, L. Zuo, N. Shashikanth, Ong Mldm, L. Wu, J. Zha, et al. 2019. Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing caspase-3 expression. Gastroenterology 157 (5): 1323–1337. https://doi.org/10.1053/j.gastro.2019.07.058.

    Article  CAS  PubMed  Google Scholar 

  34. de Almagro, M.C., and D. Vucic. 2012. The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Experimental Oncology 34 (3): 200–211.

    PubMed  Google Scholar 

  35. Yang, C.L., X.L. Zheng, K. Ye, Y.N. Sun, Y.F. Lu, H. Ge, and H. Liu. 2019. Effects of microRNA-217 on proliferation, apoptosis, and autophagy of hepatocytes in rat models of CCL4-induced liver injury by targeting NAT2. Journal of Cellular Physiology 234 (4): 3410–3424. https://doi.org/10.1002/jcp.26748.

    Article  CAS  PubMed  Google Scholar 

  36. Saini, A., N. Al-Shanti, A.P. Sharples, and C.E. Stewart. 2012. Sirtuin 1 regulates skeletal myoblast survival and enhances differentiation in the presence of resveratrol. Experimental Physiology 97 (3): 400–418. https://doi.org/10.1113/expphysiol.2011.061028.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, L., N. Quan, W. Sun, X. Chen, C. Cates, T. Rousselle, X. Zhou, X. Zhao, and J. Li. 2018. Cardiomyocyte-specific deletion of Sirt1 gene sensitizes myocardium to ischaemia and reperfusion injury. Cardiovascular Research 114 (6): 805–821. https://doi.org/10.1093/cvr/cvy033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luo, G., Z. Jian, Y. Zhu, Y. Zhu, B. Chen, R. Ma, F. Tang, and Y. Xiao. 2019. Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. International Journal of Molecular Medicine 43 (5): 2033–2043. https://doi.org/10.3892/ijmm.2019.4125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, B., J.Y. Feng, L.M. Yu, Y.C. Wang, Y.Q. Chen, Y. Wei, J.S. Han, X. Feng, Y. Zhang, S.Y. di, Z.Q. Ma, C.X. Fan, and X.Q. Ha. 2018. Icariin protects cardiomyocytes against ischaemia/reperfusion injury by attenuating sirtuin 1-dependent mitochondrial oxidative damage. British Journal of Pharmacology 175 (21): 4137–4153. https://doi.org/10.1111/bph.14457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rao, G., W. Zhang, and S. Song. 2019. MicroRNA217 inhibition relieves cerebral ischemia/reperfusion injury by targeting SIRT1. Molecular Medicine Reports 20 (2): 1221–1229. https://doi.org/10.3892/mmr.2019.10317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Science and Technology Foundation of Tianjin Health Bureau (Grant Number 2015ky31).

Author information

Authors and Affiliations

Authors

Contributions

YQ designed the research study. YQ and PL performed the research. PL and ZW analyzed the data. YQ wrote the manuscript. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Peijun Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Zhang, K., Li, P. et al. Down–regulating miR-217-5p Protects Cardiomyocytes against Ischemia/Reperfusion Injury by Restoring Mitochondrial Function via Targeting SIRT1. Inflammation 44, 383–396 (2021). https://doi.org/10.1007/s10753-020-01343-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01343-5

Key Words

Navigation