Skip to main content
Log in

Counting dimensions of L-harmonic functions with exponential growth

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset {\mathbb {R}}^{n-1}\) be a bounded open set, \(X=\Omega \times {\mathbb {R}}\subseteq {\mathbb {R}}^{n}\) be the infinite strip. Let L be a second order uniformly elliptic operator of divergence form acting on a function \(f\in W_{\text {loc}}^{1,2}(X)\) given by \(Lf=\sum _{i,j=1}^{n}\frac{\partial }{\partial x_{i}}\bigl (a^{ij}(x)\frac{\partial f}{\partial x_{j}}\bigr )\). It is natural to consider the solutions of \(Lu=0\) with boundary value \(u|_{\partial \Omega \times {\mathbb {R}}}=0\) and exponential growth at most d: \(|u(x',x_{n})|\le {\tilde{C}}e^{d|x_{n}|}\) for some \({\tilde{C}}>0\). Denote by \({\mathcal {A}}_{d}\) the solution space. In (Acta Math Sin (Engl Ser)15:525–534, 1999), Hang and Lin proved that \(\text {dim}{\mathcal {A}}_{d}\le Cd^{n-1}\). The power \(n-1\) is sharp, but one may wonder whether there are more precise estimates for the constant C. In this note, we consider some natural subspaces of \({\mathcal {A}}_{d}\) and obtain some estimates of dimensions of these subspaces. Compared with the case \(L=\Delta _{X}\), when d is sufficiently large, the estimates obtained in this note are sharp both on the power \(n-1\) and the constant C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Avellaneda, M., Lin, F.H.: Une thèorème de Liouville pour des èquations elliptique à coefficients pèriodiques. Compt. Rendus Acad. Sci. Paris 309, 245–250 (1989)

    MATH  Google Scholar 

  2. Colding, T.H., Minicozzi II, W.P.: Harmonic functions on manifolds. Ann. Math. 146, 725–747 (1997)

    Article  MathSciNet  Google Scholar 

  3. Colding, T.H., Minicozzi II, W.P.: Weyl type bounds for harmonic functions. Invent. Math. 131, 257–298 (1998)

    Article  MathSciNet  Google Scholar 

  4. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1998)

    MATH  Google Scholar 

  5. Garofalo, N., Lin, F.H.: Unique continuation for elliptic operators: a geometric variational approach. Commun. Pure Appl. Math. 40, 347–366 (1987)

    Article  MathSciNet  Google Scholar 

  6. Hang, F., Lin, F.H.: Exponential growth solutions of elliptic equations. Acta Math. Sin. (Engl. Ser.) 15, 525–534 (1999)

    Article  MathSciNet  Google Scholar 

  7. Huang, X.-T.: On the asymptotic behavior of the dimension of spaces of harmonic functions with polynomial growth. J. Reine Angew. Math. https://doi.org/10.1515/crelle-2018-0029

  8. Huang, X.-T.: An almost rigidity theorem and its applications to noncompact RCD(0,N) spaces with linear volume growth. Commun. Contemp. Math. https://doi.org/10.1142/S0219199718500761

  9. Li, P.: Harmonic sections of polynomial growth. Math. Res. Lett. 4, 35–44 (1997)

    Article  MathSciNet  Google Scholar 

  10. Li, P., Wang, J.: Counting massive sets and dimensions of harmonic functions. J. Differ. Geom. 53, 237–278 (1999)

    Article  MathSciNet  Google Scholar 

  11. Li, P., Wang, J.: Counting dimensions of L-harmonic functions. Ann. Math. 152, 645–658 (2000)

    Article  MathSciNet  Google Scholar 

  12. Moser, J., Struwe, M.: On a Liouville-type theorem for linear and nonlinear elliptic differential equations on a torus. Bol. Soc. Brasil Mat. 23, 1–20 (1992)

    Article  MathSciNet  Google Scholar 

  13. Sormani, C.: Harmonic functions on manifolds with nonnegative Ricci curvature and linear volume growth. Pac. J. Math. 192, 183–189 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professors H. C. Zhang and R. B. Zhang for discussions. The author is partially supported by NSFC 11701580 and NSFC 11521101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Tao Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XT. Counting dimensions of L-harmonic functions with exponential growth. Geom Dedicata 209, 31–42 (2020). https://doi.org/10.1007/s10711-020-00520-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-020-00520-y

Keywords

2010 Mathematics Subject Classification

Navigation