Skip to main content
Log in

Anisotropic compact stellar model of embedding class-I satisfying Karmarkar’s condition in Vaidya and Tikekar spheroidal geometry

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We present a class of solutions for a spherically symmetric anisotropic matter distribution in Vaidya and Tikekar spheroidal geometry. Making use of the Vaidya and Tikekar (VT) metric ansatz (J Astrophys Astron 3:325, 1982) for one of the metric functions \(g_{rr}\), we obtain the unknown metric function \(g_{tt}\) by utilizing the Karmakar’s embedding condition which makes the master equation tractable. The model parameters are fixed by utilizing the matching conditions of the interior spacetime and the exterior Schwarzschild solution at the boundary of the star where the radial pressure vanishes. The closed-form interior solution of the Einstein field equations thus obtained is shown to be capable of describing ultra-compact stellar objects where anisotropy might develop. The current estimated masses and radii of some other pulsars are utilized to show that the developed model meets all the requirements of a realistic star. The stability of the model is analyzed. The dependence of the curvature parameter K of the VT model, which characterizes a departure from homogeneous spherical distribution, is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Vaidya, P.C., Tikekar, R.: Exact relativistic model for a superdense star. J. Astrophys. Astron. 3, 325 (1982)

    ADS  Google Scholar 

  2. Dev, K., Gleiser, M.: Anisotropic stars II: stability. Gen. Relativ. Gravit. 35, 1435 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Esculpi, M., Malaver, M., Aloma, E.: A comparative analysis of the adiabatic stability of anisotropic spherically symmetric solutions in general relativity. Gen. Relativ. Gravit. 39, 633 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Maharaj, S.D., Govender, M.: Radiating collapse with vanishing weyl stresses. Int. J. Mod. Phys. D 14, 667 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Singh, K.N., et al.: Charged anisotropic superdense stars with constant stability factor. Astrophys. Space Sci. 358, 44 (2015)

    ADS  Google Scholar 

  6. Singh, K.N., et al.: Charged analogue of Tolman IV solution for anisotropic fluid. Int. J. Theor. Phys. 54, 3408 (2015)

    MATH  Google Scholar 

  7. Singh, K.N., Pant, N.: Singularity free charged anisotropic solutions of Einstein–Maxwell field equations in general relativity. Ind. J. Phys. 90, 843 (2016)

    Google Scholar 

  8. Singh, K.N., Pant, N., Govender, M.: Some analytic models of relativistic compact stars. Ind. J. Phys. 90, 1215 (2016)

    Google Scholar 

  9. Das, S., Rahaman, F., Baskey, L.: A new class of compact stellar model compatible with observational data. Eur. Phys. J. C. 79, 853 (2019)

    ADS  Google Scholar 

  10. Misner, C.W., Zapolsky, H.S.: High-density behaviour and dynamical stability of neutron star models. Phys. Rev. Lett. 12, 635 (1964)

    ADS  Google Scholar 

  11. Dev, K., Gleiser, M.: Anisotropic stars: exact solutions. Gen. Relativ. Gravit. 24, 1793 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Sharma, R., Maharaj, S.D.: A class of relativistic stars with a linear equation of state. Mon. Not. R. Astron. Soc. 375, 1265 (2007)

    ADS  Google Scholar 

  13. Rahaman, F., Jamil, M., Sharma, R., Chakraborty, K.: A class of solutions for anisotropic stars admitting conformal motion. Astrophys. Space Sci. 330, 249 (2010)

    ADS  MATH  Google Scholar 

  14. Varela, V., Rahaman, F., Ray, S., Chakraborty, K., Kalam, M.: Charged anisotropic matter with linear or nonlinear equation of state. Phys. Rev. D 82, 044052 (2010)

    ADS  Google Scholar 

  15. Rahaman, F., Ray, S., Jafry, A.K., Chakraborty, K.: Singularity-free solutions for anisotropic charged fluids with Chaplygin equation of state. Phys. Rev. D 82, 104055 (2010)

    ADS  Google Scholar 

  16. Ruderman, R.: Pulsars: structure and dynamics. Ann. Rev. Astron. Astrophys. 10, 427 (1972)

    ADS  Google Scholar 

  17. Herrera, L., et al.: Spherically symmetric dissipative anisotropic fluids: a general study. Phys. Rev. D 69, 084026 (2004)

    ADS  Google Scholar 

  18. Maurya, S.K., Gupta, Y.K., Ray, S., Dayanandan, B.: Anisotropic models for compact stars. Eur. Phys. J. C 75, 225 (2015)

    ADS  Google Scholar 

  19. Maurya, S.K., Gupta, Y.K.: Charged fluid to anisotropic fluid distribution in general relativity. Astrophys Space Sci. 344, 243 (2013)

    ADS  MATH  Google Scholar 

  20. Maurya, S.K., et al.: Generalized relativistic anisotropic models for compact stars. arXiv:1511.01625 [gr-qc] (2015)

  21. Gupta, Y.K., Kumar, M.: A superdense star model as charged analogue of Schwarzschild’s interior solution. Gen. Relativ. Gravit. 37, 575 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Sharma, R., Mukherjee, S., Maharaj, S.D.: General Solution for a Class of Static Charged Spheres. Gen. Relativ. Gravit. 33, 999 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Komathiraj, K., Maharaj, S.D.: Tikekar superdense stars in electric fields. J. Math. Phys. 48, 042501 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Gupta, Y.K., Kumar, P.: Astrophys. Space. Sci 331, 135 (2010)

    ADS  Google Scholar 

  25. Bijalwan, N., Gupta, Y.K.: Closed form Vaidya–Tikekar type charged fluid spheres with pressure. Astrophys. Space Sci. 334, 293 (2011)

    ADS  MATH  Google Scholar 

  26. Patel, L.K., Tikekar, R., Sabu, M.C.: Gen. Relativ. Gravit. 29, 489 (1997)

    ADS  Google Scholar 

  27. Tikekar, R., Singh, G.P.: Gravit. Cosmol. 4, 294 (1998)

    ADS  MathSciNet  Google Scholar 

  28. Sharma, R., Das, S., Govender, M., Pandya, D.M.: Ann. Phys. 414, 168079 (2020)

    Google Scholar 

  29. Kumar, J., Prasad, A.K., Maurya, S.K., Banerjee, A.: Eur. Phys. J. C 78, 540 (2018)

    ADS  Google Scholar 

  30. Karmarkar, K.R.: Gravitational metrics of spherically symmetry and class one. Proc. Ind. Acad. Sci. A 27, 56 (1948)

    Google Scholar 

  31. Maurya, S.K., Gupta, Y.K., Smitha, T.T., Rahaman, F.: Eur. Phys. J. A 52(7), 191 (2016)

    ADS  Google Scholar 

  32. Prasad, A.K., Kumar, J., Maurya, S.K., Dayanandan, B.: Astrophys. Space Sci. 364, 66 (2019)

    ADS  Google Scholar 

  33. Pandey, S.N., Sharma, S.P.: Insufficiency of Karmarkar’s condition. Gen. Relativ. Gravit. 14, 113 (1981)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Herrera, L., Ospino, J., Di, P.A.: All static spherically symmetric snisotropic solution of Einstein’s equations. Phys. Rev. D 77, 027502 (2008)

    ADS  MathSciNet  Google Scholar 

  35. Gangopadhyay, T., Ray, S., Li, X.-D., Dey, J., Dey, M.: Strange star equation of state fits the refined mass measurement of \(12\) pulsars and predicts their radii. Mon. Not. R. Astron. Soc. 431, 3216 (2013)

    ADS  Google Scholar 

  36. Pons, J.A., Walter, F.M., Lattimer, J.M., Prakash, M., Neuhauser, R.: P. An. Astrophys. J. 564, 981 (2002)

    ADS  Google Scholar 

  37. Özel, F., Güver, T., Pslatis, D.: The mass and radius of the neutron star in EXO \(1745-248\). Astrophys. J. 693, 1775 (2009)

    ADS  Google Scholar 

  38. Abubekerov, M.K., Antokhina, E.A., Cherepashchuk, A.M., Shimanskii, V.V.: The mass of the compact object in the X-ray binary Her X-\(1\)/HZ her. Astron. Rep. 52, 379 (2008)

    ADS  Google Scholar 

  39. Sharma, R., Das, S., Thirukkanesh, S.: Astrophys. Space Sci. 362, 232 (2017)

    ADS  Google Scholar 

  40. Deb, D., Guha, B.K., Rahaman, F., Ray, S.: Phys. Rev. D 97, 084026 (2018)

    ADS  MathSciNet  Google Scholar 

  41. Heintzmann, H., Hillebrandt, W.: Neutron stars with an anisotropic equation of state: mass, redshift and stability. Astron. Astrophys. 38, 51–55 (1975)

    ADS  Google Scholar 

  42. Herrera, L.: Cracking of self-gravitating compact objects. Phys. Lett. A 165, 206 (1992)

    ADS  Google Scholar 

  43. Abreu, H., Hernández, H., Núñez, L.A.: Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects. Class. Quantum Gravit. 24, 4631 (2007)

    ADS  MATH  Google Scholar 

  44. Andréasson, H.: Sharp bounds on the critical stability radius for relativistic charged spheres. Commun. Math. Phys. 288, 715 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Kaisavelu, A., Thirukkanesh, S., Govender, M., Maharaj, S.D.: Anal. Phys. 419, 168215 (2020)

    Google Scholar 

Download references

Acknowledgements

RS and KC gratefully acknowledge support from the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India, under its Visiting Research Associateship Programme. SD is thankful to the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India, where a part of this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Sharma, R., Chakraborty, K. et al. Anisotropic compact stellar model of embedding class-I satisfying Karmarkar’s condition in Vaidya and Tikekar spheroidal geometry. Gen Relativ Gravit 52, 101 (2020). https://doi.org/10.1007/s10714-020-02753-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02753-4

Keywords

Navigation