Skip to main content
Log in

Dense skyrmion crystal stabilized through interfacial exchange coupling: Role of in-plane anisotropy

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

A Monte Carlo simulated-annealing algorithm was used to study the magnetic state in an in-plane helimagnet layer on triangular lattice that exchange couples to an underlayer with strong out-of-plane anisotropy. In the single helimagnet layer with in-plane anisotropy (K), the formation of labyrinthlike domains with local spin spirals, instead of parallel stripes, is favored, and these domains rapidly transform into dense skyrmion crystals with increasing interfacial exchange coupling (J′), equivalent to a virtual magnetic field, and finally evolve to an out-of-plane uniform state at large enough J′. Moreover, with increasing K, the skyrmion crystal state can vary from regular 6-nearest-neighboring circular skyrmion arrangement to irregular squeezed skyrmions with less than 6 nearest neighbors when the in-plane anisotropy energy is higher than the interfacial exchange energy as the skyrmion number is maximized. Finally, we demonstrated that the antiferromagnetic underlayer cannot induce skyrmions while the chirality inversion can be achieved on top of an out-of-plane magnetization underlayer with 180° domain walls, supporting the experimental findings in FeGe thin film. This compelling advantage offers a fertile playground for exploring emergent phenomena that arise from interfacing magnetic skyrmions with additional functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: Advances in physics and potential applications, Nat. Rev. Mater. 2(7), 17031 (2017)

    Article  ADS  Google Scholar 

  2. X. Zhang, Y. Zhou, K. Mee Song, T. E. Park, J. Xia, M. Ezawa, X. Liu, W. Zhao, G. Zhao, and S. Woo, Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications, J. Phys.: Condens. Matter 32(14), 143001 (2020)

    ADS  Google Scholar 

  3. I. Dzyaloshinsky, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids 4(4), 241 (1958)

    Article  ADS  Google Scholar 

  4. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120(1), 91 (1960)

    Article  ADS  Google Scholar 

  5. A. N. Bogdanov and U.K. Rößler, Chiral symmetry breaking in magnetic thin films and multilayers, Phys. Rev. Lett. 87(3), 037203 (2001)

    Article  ADS  Google Scholar 

  6. A. Fert and P. M. Levy, Role of anisotropic exchange interactions in determining the properties of spin-glasses, Phys. Rev. Lett. 44(23), 1538 (1980)

    Article  ADS  Google Scholar 

  7. A. Fert, Magnetic and transport properties of metallic multilayers, Mater. Sci. Forum 59–60, 439 (1991)

    Article  Google Scholar 

  8. A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nat. Nanotechnol. 8(3), 152 (2013)

    Article  ADS  Google Scholar 

  9. G. Chen, T. Ma, A. T. N’Diaye, H. Kwon, C. Won, Y. Wu, and A. K. Schmid, Tailoring the chirality of magnetic domain walls by interface engineering, Nat. Commun. 4(1), 2671 (2013)

    Article  ADS  Google Scholar 

  10. G. Chen, A. T. N’Diaye, Y. Wu, and A. K. Schmid, Ternary superlattice boosting interface-stabilized magnetic chirality, Appl. Phys. Lett. 106(6), 062402 (2015)

    Article  ADS  Google Scholar 

  11. G. Chen, A. T. N’Diaye, S. P. Kang, H. Y. Kwon, C. Won, Y. Wu, Z. Q. Qiu, and A. K. Schmid, Unlocking Bloch-type chirality in ultrathin magnets through uniaxial strain, Nat. Commun. 6(1), 6598 (2015)

    Article  ADS  Google Scholar 

  12. M. Hoffmann, B. Zimmermann, G. P. Müller, D. Schürhoff, N. S. Kiselev, C. Melcher, and S. Blügel, Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii-Moriya interactions, Nat. Commun. 8(1), 308 (2017)

    Article  ADS  Google Scholar 

  13. S. Banerjee, O. Erten, and M. Randeria, Ferromagnetic exchange, spin-orbit coupling and spiral magnetism at the LaAlO3/SrTiOO3 interface, Nat. Phys. 9(10), 626 (2013)

    Article  Google Scholar 

  14. D. Cortés-Ortuño, N. Romming, M. Beg, K. von Bergmann, A. Kubetzka, O. Hovorka, H. Fangohr, and R. Wiesendanger, Nanoscale magnetic skyrmions and target states in confined geometries, Phys. Rev. B 99(21), 214408 (2019)

    Article  ADS  Google Scholar 

  15. L. Sun, R. X. Cao, B. F. Miao, Z. Feng, B. You, D. Wu, W. Zhang, A. Hu, and H. F. Ding, Creating an artificial two-dimensional skyrmion crystal by nanopatterning, Phys. Rev. Lett. 110(16), 167201 (2013)

    Article  ADS  Google Scholar 

  16. D. A. Gilbert, B. B. Maranville, A. L. Balk, B. J. Kirby, P. Fischer, D. T. Pierce, J. Unguris, J. A. Borchers, and K. Liu, Realization of ground-state artificial skyrmion lattices at room temperature, Nat. Commun. 6(1), 8462 (2015)

    Article  ADS  Google Scholar 

  17. G. Chen, A. Mascaraque, A. T. N’Diaye, and A. K. Schmid, Room temperature skyrmion ground state stabilized through interlayer exchange coupling, Appl. Phys. Lett. 106(24), 242404 (2015)

    Article  ADS  Google Scholar 

  18. A. K. Nandy, N. S. Kiselev, and S. Blügel, Interlayer exchange coupling: A general scheme turning chiral magnets into magnetic multilayers carrying atomic-scale skyrmions, Phys. Rev. Lett. 116(17), 177202 (2016)

    Article  ADS  Google Scholar 

  19. M. N. Wilson, A. B. Butenko, A. N. Bogdanov, and T. L. Monchesky, Chiral skyrmions in cubic helimagnet films: The role of uniaxial anisotropy, Phys. Rev. B 89(9), 094411 (2014)

    Article  ADS  Google Scholar 

  20. Y. Hu, X. Chi, X. Li, Y. Liu, and A. Du, Creation and annihilation of skyrmions in the frustrated magnets with competing exchange interactions, Sci. Rep. 7(1), 16079 (2017)

    Article  ADS  Google Scholar 

  21. S. Z. Lin, A. Saxena, and C. D. Batista, Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy, Phys. Rev. B 91(22), 224407 (2015)

    Article  ADS  Google Scholar 

  22. M. Vousden, M. Albert, M. Beg, M. A. Bisotti, R. Carey, D. Chernyshenko, D. Cortés-Ortuño, W. Wang, O. Hovorka, C. H. Marrows, and H. Fangohr, Skyrmions in thin films with easy-plane magnetocrystalline anisotropy, Appl. Phys. Lett. 108(13), 132406 (2016)

    Article  ADS  Google Scholar 

  23. S. Huang and C. Chien, Extended skyrmion phase in epitaxial FeGe (111) thin films, Phys. Rev. Lett. 108(26), 267201 (2012)

    Article  ADS  Google Scholar 

  24. Y. Li, N. Kanazawa, X. Z. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X. F. Jin, F. Kagawa, and Y. Tokura, Robust formation of skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi, Phys. Rev. Lett. 110(11), 117202 (2013)

    Article  ADS  Google Scholar 

  25. P. Bruno, V. Dugaev, and M. Taillefumier, Topological Hall effect and Berry phase in magnetic nanostructures, Phys. Rev. Lett. 93(9), 096806 (2004)

    Article  ADS  Google Scholar 

  26. Y. Tokunaga, X. Z. Yu, J. S. White, H. M. Rønnow, D. Morikawa, Y. Taguchi, and Y. Tokura, A new class of chiral materials hosting magnetic skyrmions beyond room temperature, Nat. Commun. 6(1), 7638 (2015)

    Article  ADS  Google Scholar 

  27. J. Rowland, S. Banerjee, and M. Randeria, Skyrmions in chiral magnets with Rashba and Dresselhaus spin-orbit coupling, Phys. Rev. B 93(2), 020404 (2016)

    Article  ADS  Google Scholar 

  28. S. Rohart and A. Thiaville, Skyrmion confinement in ultra-thin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction, Phys. Rev. B 88(18), 184422 (2013)

    Article  ADS  Google Scholar 

  29. B. Bian, G. Chen, Q. Zheng, J. Du, H. Lu, J. P. Liu, Y. Hu, and Z. Zhang, Self-assembly of CoPt magnetic nanoparticle arrays and its underlying forces, Small 14(34), 1801184 (2018)

    Article  Google Scholar 

  30. W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, S. G. E. te Velthuis, and A. Hoffmann, Blowing magnetic skyrmion bubbles, Science 349(6245), 283 (2015)

    Article  ADS  Google Scholar 

  31. B. Heim, T. F. R0nnow, S. V. Isakov, and M. Troyer, Quantum versus classical annealing of Ising spin glasses, Science 348(6231), 215 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  32. R. Li, L. Yu, and Y. Hu, Spin-glass irreversibility temperature and magnetic stabilization in ferromagnet/spin-glass bilayers, Phys. Status Solidi Rapid Res. Lett. 13(6), 1900039 (2019)

    Article  ADS  Google Scholar 

  33. X. Chi, R. Li, L. Yu, H. Kou, A. Du, Y. Liu, and Y. Hu, Spin glass properties mapped by coercivity in ferromagnet/spin glass bilayers, Nanotechnology 30(12), 125702 (2019)

    Article  ADS  Google Scholar 

  34. X. D. Chi and Y. Hu, Modulation of skyrmion diameter in centrosymmetric frustrated magnet, Acta Physica Sinica 67, 137502 (2018)

    Article  Google Scholar 

  35. N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, and R. Wiesendanger, Field-dependent size and shape of single magnetic skyrmions, Phys. Rev. Lett. 114(17), 177203 (2015)

    Article  ADS  Google Scholar 

  36. S. von Malottki, B. Dupé, P. F. Bessarab, A. Delin, and S. Heinze, Enhanced skyrmion stability due to exchange frustration, Sci. Rep. 7(1), 12299 (2017)

    Article  ADS  Google Scholar 

  37. N. C. Koon, Calculations of exchange bias in thin films with ferromagnetic/antiferromagnetic interfaces, Phys. Rev. Lett. 78(25), 4865 (1997)

    Article  ADS  Google Scholar 

  38. H. Du, W. Ning, M. Tian, and Y. Zhang, Field-driven evolution of chiral spin textures in a thin helimagnet nanodisk, Phys. Rev. B 87(1), 014401 (2013)

    Article  ADS  Google Scholar 

  39. H. Du, R. Che, L. Kong, X. Zhao, C. Jin, C. Wang, J. Yang, W. Ning, R. Li, C. Jin, X. Chen, J. Zang, Y. Zhang, and M. Tian, Edge-mediated skyrmion chain and its collective dynamics in a confined geometry, Nat. Commun. 6(1), 8504 (2015)

    Article  ADS  Google Scholar 

  40. X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe, Nat. Mater. 10(2), 106 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to Dr. Gong Chen helping with this work. This work was financially supported by the National Natural Science Foundation of China (No. 11774045), the Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (No. 20180510008), and the Fundamental Research Funds for Central Universities (No. N182410008-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, MX., Zhang, ZB., Chi, XD. et al. Dense skyrmion crystal stabilized through interfacial exchange coupling: Role of in-plane anisotropy. Front. Phys. 16, 23501 (2021). https://doi.org/10.1007/s11467-020-1000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1000-6

Keywords

Navigation