Skip to main content
Log in

Potential of a rhizobacterium Bacillus subtilis (Bbv 57) on Fusarium oxysporum f. sp. gerberae and Meloidogyne incognita infecting Gerbera grown in protected cultivation

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Ninety five bacterial strains were isolated from the rhizosphere and soils of flower crops, specifically gerbera, carnation and tuberose, were preliminarily screened against Fusarium oxysporum f. sp. gerberae in vitro along with five elite strains Bbv 57, EPCO 16, EPC 5, EPC 8 and Pf 1 obtained from Department of Plant Pathology, TNAU, Coimbatore, India. The results revealed that the strain Bbv 57 had highest inhibition of 50.00% and showed the maximum value for the assays that is siderophore, hydrogen cyanide, IAA, GA3 and salicylic acid production (3.68 O.D. value; 14.05 µg ml-1; 44.40 µg ml-1; 25.28 µg ml-1 and 19.25 µg ml-1 respectively). It also showed resistance to antibiotics namely ampicillin, erythromycin, clindamycin. The highest exopolysaccharides, biofilm production was observed and had lowest protease production clearly indicated that it is non - pathogenic to plants. Further, the polymerase chain reaction using16S rRNA intervening sequencing showed 100% homology to Bacillus subtilis (KF718836) and showed positive for quorum sensing regulator genes of aiiA and comQ. Additionally, the culture filtrate assay also produced significant reduction in egg hatching capacity and juvenile mortality of root-knot nematode Meloidogyne incognita. Further, the HPLC study showed 91.69 µg µl-1 of surfactin with the retention time of 2.304 min and 0.453 µg µl-1 of Iturin with the retention time of 8.739 min at 205 nm. Whereas, GCMS analysis has detected the aliphatic hydrocarbons responsible for antifungal, antibacterial and nematicidal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adam, M., Heuer, H., & Hallmann, J. (2014). Bacterial Antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLoS One, 9(2), e90402. https://doi.org/10.1371/journal.pone.0090402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonmatin, J. M., Laprevote, O., & Peypoux, F. (2003). Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity structure relationships to design new bioactive agents. ombinatorial Chemistry & High Throughput Screening, 6, 541–556.

    Article  CAS  Google Scholar 

  • Borrow, A., Brain, P. W., Chester, U. E., Curtis, P. J., Hemming, H. G., Jeffereys, E. C., et al. (1955). Gibberellic acids a metabolic product of the fungus Gibberella fujikuroisome observations on its production and isolation.J. Sci. Food Agric., 6, 340–348.

  • Cadena, M. B., Burelle, N. K., Kathy, S. L., Santen, E. V., & Kloepper, J. W. (2008). Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biological Control, 47, 55–59.

    Article  Google Scholar 

  • Cano, R. J., Borucki, M. K., Higby-Schweitzer, M., Poinar, H. N., Poinar, G. O., & Pollard, K. J. (1994). Bacillus DNA in fossil bees: an ancient symbiosis. Appl. Environ. Microbiol., 60(6), 2164–2167.

    Article  CAS  Google Scholar 

  • Cazorla, F. M., Li, X. Z., & Zhang, L. H. (2007). Isolation and characterization of antagonistic Bacillus subtilisstrains from the avocado rhizoplane displaying biocontrol activity. Journal of Applied Microbiology, 103(5), 1950–1959.

    Article  CAS  Google Scholar 

  • Chandramohan, D., & Mahadevan, A. (1968). Indole acetic acid metabolism in soils. Curr. Sci., 37, 112–113.

    CAS  Google Scholar 

  • Danhorn, T., & Fuqua, C. (2007). Biofilm formation by plant associated bacteria. Annual Review of Microbiology, 61, 401–422.

    Article  CAS  Google Scholar 

  • Dennis, C., & Webster, J. (1971). Antagonistic properties of species groups of Trichoderma II. Production of volatile antibiotics. Trans. Br. Mycol. Soc., 57, 41–48.

    Article  CAS  Google Scholar 

  • Eisenback, J. D., Hirschmann, H., Sasser, T. N., & Triantaphyllou, A. C. (1981). A guide to the four most common species of root-knot nematodes (Meloidogynespp.) with a Pictorial Key. A co-operative publication of the Department of Plant Pathology and Genetics (p. 48). Releigh: North Carolina State University and United States Agency for International Development.

    Google Scholar 

  • Gan Chan, K., Tiew, S.-Z., & Ching-Ching, N. (2007). Rapid isolation method of soil bacilli and screening of their quorum quenching activity. Asia-Pacific Journal of Molecular Biology and Biotechnology, 15(3), 153–156.

    Google Scholar 

  • Ghorbanpour, M., Omidvari, M., Abbaszadeh-Dahaji, P., Omidvar, R., & Kariman, K. (2018). Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control, 117, 147–157. https://doi.org/10.1016/j.biocontrol.2017.11.006

    Article  Google Scholar 

  • Gomez, K. A., & Gomez, A. A. 1984. Statistical Procedure for Agricultural Research.John Wiley and Sons, New York, United States.

  • Gordon, S. A., & Paleg, L. G. (1957). Quantitative measurement of IAA. Physiol. plantarum, 10, 347–348.

    Google Scholar 

  • Harvey, J., Keenan, K. P., & Gilmour, A. (2007). Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiology, 24(4), 380–392.

    Article  CAS  Google Scholar 

  • Haseeb, A., Ahmed, V., & Shukla, P. K. 2005.Comparative efficacy of pesticides, biocontrol agents and botanicals against Meloidogyne incognita - Fusariumoxysporumcomplex on Vignamungo. Ann. Plant Protect. Sci., 13(2): 434–437.

  • Heimpel, G. E., & Mills, N. (2017). Biological Control - Ecology and Applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Huang, M. L., van Peer, R., Woestenborghs, R., de Coster, R., Heykants, J., & Jansen, A. A. (1993). Pharmacokinetics of the novel antipsychotic agent risperidone and the prolactin response in healthy subjects. Clin. Pharmacol. Ther., 54(3), 257–268.

    Article  CAS  Google Scholar 

  • Kavitha, P. G., Jonathan, E. I., & Nakkeeran, S. (2012). Effects of crude antibiotic of Bacillus subtilison hatching of eggs and mortality of juveniles of Meloidogyne incognita. Nematologia Mediterranea, 40, 203–206.

    Google Scholar 

  • Kishore, C. (2007). Studies on diagnosis and management of fungal wilt diseases of carnation and gerbera under protected cultivation. M.Sc. Thesis. University of Agricultural Sciences, Dharwad, India.

  • Komada, H. (1975). Development of a selective medium for quantitative isolation of F. oxysporum from natural soils. Rev. Plant Protect. Res., 8, 114–125.

    Google Scholar 

  • Kumar. (2008). Studies on root-knot and wilt complex in Coleus forskohlii(wild.) briq.caused by Meloidogyne incognita (Kofoid and White) Chitwood and Fusariumchlamydosporum(Frag. and Cif.) Booth.M.Sc. Thesis, University of Agricultural Sciences, Dharwad, India.

  • Kumar, R., Ahmed, N., Lal, S., & Mahendiran, G. (2014). Evaluation of gerbera genotypes for cut flower production under different growing conditions of Kashmir. Indian Journal of Horticulture, 71(1), 138–141.

    Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of Structural proteins during the assembly of the Head of bacteriophageT4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  • Lhoste, A. (2002). Cut gerbera: varietal experiments in Mediterranean climate: PHM -. Revue - Horticole, 435, 24–27.

    Google Scholar 

  • Lucy, M., Reed, E., & Glick, B. R. (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek, 86(1), 1–25.

    Article  CAS  Google Scholar 

  • Mahadevan, A., & Sridhar, R. (1982). Methods in physiological plant pathology (p. 316). Madras: Siva Kami Publication.

    Google Scholar 

  • Meyer, J. M., & Abdallah, M. A. (1978). The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J. Gen. Microbiol., 107, 319–328.

    Article  CAS  Google Scholar 

  • Meyer, J. M., Azelvandre, P., & Georges, C. (1992). Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomonas fluorescensCHA0. BioFactors, 4, 23–27.

    CAS  PubMed  Google Scholar 

  • Miller, R. L., & Higgins, V. J. (1970). Association of cyanide with infection of birdsfoot trefoil by Stemphylium loti. Phytopathology, 60, 104–110.

    Article  Google Scholar 

  • Mora, I., Jordi, C., & Emilio, M. (2011). Antimicrobial peptide genes in Bacillus strains from plant environments. Int. Microbiol., 14, 213–223.

    CAS  PubMed  Google Scholar 

  • Mukherjee, A. K., & Das, K. (2005). Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by Bacillus subtilisstrains in a particular habitat. FEMS Microbiology Ecology, 54, 479–489.

    Article  CAS  Google Scholar 

  • Nagesh, M., & Parvatha Reddy, P. (1996). Management of Meloidogyne incognita on carnation and gerbera in commercial polyhouses. In Crop Productivity and Sustainability – Shaping the Future (2, p. 249). New Delhi: International Crop Science Congress, NAAS. nd .

  • Niknam, G. R., & Dhawan, S. C. (2002). Systemic resistance induced by Pseudomonas fluorescensisolate Pf 1 in tomato against Rotylenchulusreniformis. International Journal of Nematology, 12(2), 203–208.

    Google Scholar 

  • Omar, A., Almaghrabi, Samia I.M.., & Tamer, S. A. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J. Biol. sci., 20(1), 57–61.

    Article  Google Scholar 

  • Pizana, C.G., Barrera, L.L. & Ma. (2010). Evaluation of the fungicidal activity of leaves powder and extracts of fifteen Mexican plants against Fusariumoxysporumf.sp. gladioli(Massey) synder and Hansen. Plant Pathol. J., 9(3), 103–111.

  • Polonca, S., & Mulec, I. M. (2009). Social Interactions and Distribution of Bacillus subtilis Pherotypes at Microscale. J. Bacterol., 191(6), 1756–1764.

    Article  Google Scholar 

  • Ramyabharathi, SA. & Raguchander, T. (2014). Efficacy of secondary metabolites produced by Bacillus subtilis EPCO16 against tomato wilt pathogen Fusarium oxysporum f.sp lycopersici. Journal of Mycology and Plant Patholog, 44(2), 148–153.

  • Rajendran, L., Raja, P., Jegadeeswari, V., Shanthi, V. P., & Selvaraj, N. (2014). Pseudomonas fluorescens and Trichoderma viride as enriched bioconsortium for the management of Fusarium wilt in Carnation and Gerbera under protected cultivation. Indian Phytopathology, 67(1), 77–81.

    Google Scholar 

  • Rajendran, L., Ramjegathesh, R., Shanthiyaa, V., Raguchander, T., Karthikeyan, G., & Samiyappan, R. (2012). Biocontrol potential and mode of action of strains EPC5 and EPC8 of endophytic bacterium Bacillus subtilis. Indian Phytopathology, 65(2), 122–127.

    CAS  Google Scholar 

  • Ramarathnam, R. (2007). Phyllosphere bacterial biological contol of Leptosphaeriamaculans, the blackleg pathogen of canola (Brassica napusL.): screening for potential antibiotic producers, investigation of the mechanism of control, biochemical detection of the antifungal compounds and establishment of the role of antibiosis. Ph.D. Thesis, University of Manitoba, Winnipeg, Manitoba.

  • Ramezani, M. M., Mahdikhani Moghaddam, E., Baghaee Ravari, S., & Rouhani, H. (2014). The nematicidal potential of local Bacillus species against the root-knot nematode infecting greenhouse tomatoes. Biocontrol Science and Technology, 24(3), 279–290.

    Article  Google Scholar 

  • Ramzan Memoona, B., Tabassum, I. A., Nasir, AnwarKhan, Tariq, M., Awan, M. F., Shahid, Naila, et al. (2016). Identification and application of biocontrol agents against Cotton leaf curl virus disease in Gossypium hirsutum under greenhouse conditions. Biotechnology & Biotechnological Equipment, 30(3), 469–478. https://doi.org/10.1080/13102818.2016.1148634

  • Schneider, K. B., Tanya, M. P., & Alan, D. (2002). Pheromone in Bacillus subtilis genes required for production of ComX characterization. J. Bacteriol., 184(2), 410–419.

    Article  CAS  Google Scholar 

  • Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophore. Anal. Biochem., 169, 47–56.

    Article  Google Scholar 

  • Singh, V. K., & Kumar, A. (2001). PCR Primer design. Mol. Biol., 2, 27–32.

    CAS  Google Scholar 

  • Sokol, P. A., Ohman, D. E., & Iglewski, B. H. (1979). A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa. Journal of Clinical Microbiology, 9, 538–540.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stein, T. (2005). Bacillus subtilisantibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56, 845–857.

    Article  CAS  Google Scholar 

  • Stefanic, P., & Mulec, I. M. (2009). Bacillus subtilis Pherotypes at Microscale. J. Bacteriol., 191(6), 1756.

    Article  CAS  Google Scholar 

  • Sudhagar, S. (2013). Production and marketing of cut flower (Rose and Gerbera) in HosurTaluk. International Journal of Business and Management Invention, 2(5), 15–25.

    Google Scholar 

  • Taylor, A. L., Dropkin, V. H. and Martin.G.C (1955). Perineal patterns of root-knot nematodes. Phytopathology, 45, 26–34.

  • Taylor, A. L., & Sasser, J. N. (1978). Biology, Identification and control of root- knot nematodes (Meloidogynespp.) (p.111). Graphics: North Carolina State Univ.

  • Xiao, T. J., Shi-Yong, T., Qi-Rong, S., & Wei, R. (2012). Bacillus cereus X5 suppresses root-knot nematode of tomato by colonizing in roots and soil. African Journal of Microbiology Research, 6(10), 2321–2327.

    Google Scholar 

  • Yuan, J., Raza, W., Huang, Q., & Qirong, S. (2011). Quantification of the antifungal lipopeptideiturin A by high performance liquid chromatography coupled with aqueous two-phase extraction. J. Chromatogr. B, 879, 2746–2750.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The finding is an outcome of project funded by Department of Biotechnology, Ministry of Science and Technology, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rajendran.

Ethics declarations

Ethics declarations

All authors have participated in the research and manuscript preparation and all have reviewed and approved the manuscript. The manuscript has not been published before and has only been submitted to EJPP for evaluation.

Conflict of interest

Authors declare no conflict of interest.

Human and animal sudies

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramyabharathi, S., Meena, K.S., Rajendran, L. et al. Potential of a rhizobacterium Bacillus subtilis (Bbv 57) on Fusarium oxysporum f. sp. gerberae and Meloidogyne incognita infecting Gerbera grown in protected cultivation. Eur J Plant Pathol 158, 615–632 (2020). https://doi.org/10.1007/s10658-020-02087-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02087-6

Keywords

Navigation