Skip to main content

Advertisement

Log in

Analytical ultracentrifuge: an ideal tool for characterization of non-coding RNAs

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Analytical ultracentrifugation (AUC) has emerged as a robust and reliable technique for biomolecular characterization with extraordinary sensitivity. AUC is widely used to study purity, conformational changes, biomolecular interactions, and stoichiometry. Furthermore, AUC is used to determine the molecular weight of biomolecules such as proteins, carbohydrates, and DNA and RNA. Due to the multifaceted role(s) of non-coding RNAs from viruses, prokaryotes, and eukaryotes, research aimed at understanding the structure–function relationships of non-coding RNAs is rapidly increasing. However, due to their large size, flexibility, complicated secondary structures, and conformations, structural studies of non-coding RNAs are challenging. In this review, we are summarizing the application of AUC to evaluate the homogeneity, interactions, and conformational changes of non-coding RNAs from adenovirus as well as from Murray Valley, Powassan, and West Nile viruses. We also discuss the application of AUC to characterize eukaryotic long non-coding RNAs, Xist, and HOTAIR. These examples highlight the significant role AUC can play in facilitating the structural determination of non-coding RNAs and their complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, Gamarnik AV (2005) Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol 79:6631–6643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Dominguez JR, Lodish HF (2017) Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood 130:1965–1975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arakawa T, Philo JS (1999) Applications of analytical ultracentrifuge to molecular biology and pharmaceutical science. Yakugaku Zasshi 119:597–611

    CAS  PubMed  Google Scholar 

  • Ariumi Y (2014) Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection. Front Genet 5:423

    PubMed  PubMed Central  Google Scholar 

  • Ariyo EO, Booy EP, Patel TR, Dzananovic E, McRae EK, Meier M, McEleney K, Stetefeld J, McKenna SA (2015) Biophysical characterization of G-quadruplex recognition in the PITX1 mRNA by the specificity domain of the helicase RHAU. PLoS ONE 10:e0144510

    PubMed  PubMed Central  Google Scholar 

  • Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bevilacqua PC, Cech TR (1996) Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR. Biochemistry 35:9983–9994

    CAS  PubMed  Google Scholar 

  • Bhan A, Soleimani M, Mandal SS (2017) Long noncoding RNA and cancer: a new paradigm. Cancer Res 77:3965–3981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blythe AJ, Fox AH, Bond CS (2016) The ins and outs of lncRNA structure: how, why and what comes next? Biochem Biophys Acta 1859:46–58

    CAS  PubMed  Google Scholar 

  • Bolha L, Ravnik-Glavac M, Glavac D (2017) Long noncoding RNAs as biomarkers in cancer. Dis Mark 2017:7243968

    Google Scholar 

  • Brautigam CA (2011) Using Lamm-Equation modeling of sedimentation velocity data to determine the kinetic and thermodynamic properties of macromolecular interactions. Methods (San Diego, Calif) 54:4–15

    CAS  Google Scholar 

  • Brautigam CA, Wakeman CA, Winkler WC (2009) Methods for analysis of ligand-induced RNA conformational changes. Methods Mol Biol 540:77–95

    CAS  PubMed  Google Scholar 

  • Brinton MA (2013) Replication cycle and molecular biology of the West Nile virus. Viruses 6:13–53

    PubMed  PubMed Central  Google Scholar 

  • Brinton MA, Basu M (2015) Functions of the 3′ and 5′ genome RNA regions of members of the genus Flavivirus. Virus Res 206:108–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brinton MA, Fernandez AV, Dispoto JH (1986) The 3’-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 153:113–121

    CAS  PubMed  Google Scholar 

  • Brookes E, Demeler B (2007) Parsimonious regularization using genetic algorithms applied to the analysis of analytical ultracentrifugation experiments. GECCO '07

  • Brookes E, Cao W, Demeler B (2010) A two-dimensional spectrum analysis for sedimentation velocity experiments of mixtures with heterogeneity in molecular weight and shape. Eur Biophys J 39:405–414

    PubMed  Google Scholar 

  • Carlevaro-Fita J, Lanzos A, Feuerbach L, Hong C, Mas-Ponte D, Pedersen JS, Drivers P, Functional Interpretation G, Johnson R, Consortium P (2020) Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun Biol 3:56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LL (2016) Linking long noncoding RNA localization and function. Trends Biochem Sci 41:761–772

    CAS  PubMed  Google Scholar 

  • Chen X, Sun Y, Cai R, Wang G, Shu X, Pang W (2018) Long noncoding RNA: multiple players in gene expression. BMB Rep 51:280–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christiaansen A, Varga SM, Spencer JV (2015) Viral manipulation of the host immune response. Curr Opin Immunol 36:54–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E, Moscato P, Dinger ME, Mattick JS (2012) Genome-wide analysis of long noncoding RNA stability. Genome Res 22:885–898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole J, Hansen J (1999) Analytical ultracentrifugation as a contemporary biomolecular research tool. J Biomol Tech 10:163–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole JL, Lary JW, P Moody T, Laue TM (2008) Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium. Methods Cell Biol 84:143–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crepeau RH, Edelstein SJ, Rehmar MJ (1972) Analytical ultracentrifugation with absorption optics and a scanner-computer system. Anal Biochem 50:213–233

    CAS  PubMed  Google Scholar 

  • Dam J, Schuck P (2004) Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity concentration profiles. Method Enzymol 384:185–212

    CAS  Google Scholar 

  • Dean WL, Gray RD, DeLeeuw L, Monsen RC, Chaires JB (2019) Putting a new spin of G-quadruplex structure and binding by analytical ultracentrifugation. Methods Mol Biol 2035:87–103

    CAS  PubMed  Google Scholar 

  • Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci USA 106:97–102

    CAS  PubMed  Google Scholar 

  • Delas MJ, Jackson BT, Kovacevic T, Vangelisti S, Munera Maravilla E, Wild SA, Stork EM, Erard N, Knott SRV, Hannon GJ (2019) lncRNA Spehd regulates hematopoietic stem and progenitor cells and is required for multilineage differentiation. Cell Rep 27(719–729):e716

    Google Scholar 

  • Demeler B, van Holde KE (2004) Sedimentation velocity analysis of highly heterogeneous systems. Anal Biochem 335:279–288

    CAS  PubMed  Google Scholar 

  • Demeler B, Brookes E (2008) Monte Carlo analysis of sedimentation experiments. Colloid Polym Sci 286:129–137

    CAS  Google Scholar 

  • Demeler B, Gorbet GE (2016) Analytical ultracentrifugation data analysis with UltraScan-III. In: Uchiyama S, Arisaka F, Stafford WF, Laue T (eds) Analytical ultracentrifugation: instrumentation, software, and applications. Springer Japan, Tokyo, pp 119–143

    Google Scholar 

  • Duan Y, Zeng M, Jiang B, Zhang W, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Pan L, Chen S, Cheng A (2019) Flavivirus RNA-dependent RNA polymerase interacts with genome UTRs and viral proteins to facilitate lavivirus RNA replication. Viruses 11:929

    CAS  PubMed Central  Google Scholar 

  • Duszczyk MM, Wutz A, Rybin V, Sattler M (2011) The Xist RNA A-repeat comprises a novel AUCG tetraloop fold and a platform for multimerization. RNA (New York, NY) 17:1973–1982

    CAS  Google Scholar 

  • Dzananovic E, Patel TR, Deo S, McEleney K, Stetefeld J, McKenna SA (2013) Recognition of viral RNA stem-loops by the tandem double-stranded RNA binding domains of PKR. RNA (New York, NY) 19:333–344

    CAS  Google Scholar 

  • Dzananovic E, Patel TR, Chojnowski G, Boniecki MJ, Deo S, McEleney K, Harding SE, Bujnicki JM, McKenna SA (2014) Solution conformation of adenovirus virus associated RNA-I and its interaction with PKR. J Struct Biol 185:48–57

    CAS  PubMed  Google Scholar 

  • Dzananovic E, Astha CG, Deo S, Booy EP, Padilla-Meier P, McEleney K, Bujnicki JM, Patel TR, McKenna SA (2017) Impact of the structural integrity of the three-way junction of adenovirus VAI RNA on PKR inhibition. PLoS ONE 12:e0186849

    PubMed  PubMed Central  Google Scholar 

  • Dzananovic E, McKenna SA, Patel TR (2018) Viral proteins targeting host protein kinase R to evade an innate immune response: a mini review. Biotechnol Genet Eng Rev 34:33–59

    PubMed  Google Scholar 

  • Elling R, Chan J, Fitzgerald KA (2016) Emerging role of long noncoding RNAs as regulators of innate immune cell development and inflammatory gene expression. Eur J Immunol 46:504–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan YH, Nadar M, Chen CC, Weng CC, Lin YT, Chang RY (2011) Small noncoding RNA modulates Japanese encephalitis virus replication and translation in trans. Virol J 8:492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes JCR, Acuna SM, Aoki JI, Floeter-Winter LM, Muxel SM (2019) Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA 5:17

    CAS  PubMed Central  Google Scholar 

  • Fernández-Sanlés A, Ríos-Marco P, Romero-López C, Berzal-Herranz A (2017) Functional information stored in the conserved structural RNA domains of lavivirus genomes. Front Microbiol 8:546

    PubMed  PubMed Central  Google Scholar 

  • Fico A, Fiorenzano A, Pascale E, Patriarca EJ, Minchiotti G (2019) Long non-coding RNA in stem cell pluripotency and lineage commitment: functions and evolutionary conservation. Cell Mol Life Sci 76:1459–1471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV (2006) A 5’ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev 20:2238–2249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flynn RA, Chang HY (2014) Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14:752–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita H (1975) Foundations of ultracentrifugal analysis. Wiley, New York

    Google Scholar 

  • Gale M Jr, Katze MG (1998) Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase. Pharmacol Ther 78:29–46

    CAS  PubMed  Google Scholar 

  • Gillis RB, Rowe AJ, Adams GG, Harding SE (2014) A review of modern approaches to the hydrodynamic characterisation of polydisperse macromolecular systems in biotechnology. Biotechnol Genet Eng Rev 30:142–157

    CAS  PubMed  Google Scholar 

  • Gopal A, Zhou ZH, Knobler CM, Gelbart WM (2012) Visualizing large RNA molecules in solution. RNA (New York, NY) 18:284–299

    CAS  Google Scholar 

  • Gorbet GE, Mohapatra S, Demeler B (2018) Multi-speed sedimentation velocity implementation in UltraScan-III. Eur Biophys J 47:825–835

    PubMed  PubMed Central  Google Scholar 

  • Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harding SE (1994) Determination of absolute molecular weights using sedimentation equilibrium analytical ultracentrifugation. In: Jones C, Mulloy B, Thomas A (eds) Methods in molecular biology, vol 22. Humana Press, New Jercy, pp 75–84

    Google Scholar 

  • Harding SE, Rowe AJ (1988) Automatic data capture and analysis of Rayleigh interference fringe displacements in analytical ultracentrifugation. Opt Lasers Eng 8:83–96

    Google Scholar 

  • Harding SE, Winzor DJ (2001) Sedimentation velocity analytical ultracentrifugation. In: Harding SE, Chouwdhry BZ (eds) Protein–ligand interactions: hydrodynamics and calorimetry. Oxford Univeristy Press, London, pp 75–103

    Google Scholar 

  • Harding SE, Adams GG, Almutairi F, Alzahrani Q, Erten T, Kok MS, Gillis RB (2015) Ultracentrifuge methods for the analysis of polysaccharides, glycoconjugates, and lignins. Methods Enzymol 562:391–439

    CAS  PubMed  Google Scholar 

  • Hu W, Alvarez-Dominguez JR, Lodish HF (2012) Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep 13:971–983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CN, Gorbet GE, Ramsower H, Urquidi J, Brancaleon L, Demeler B (2018) Multi-wavelength analytical ultracentrifugation of human serum albumin complexed with porphyrin. Eur Biophys J 47:789–797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnsson P, Lipovich L, Grander D, Morris KV (2014) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochem Biophys Acta 1840:1063–1071

    CAS  PubMed  Google Scholar 

  • Jones AN, Sattler M (2019) Challenges and perspectives for structural biology of lncRNAs—the example of the Xist lncRNA A-repeats. J Mol Cell Biol 11:845–859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Jutooru I, Chadalapaka G, Johnson G, Frank J, Burghardt R, Kim S, Safe S (2013) HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32:1616–1625

    CAS  PubMed  Google Scholar 

  • Kim DN, Thiel BC, Morozwich T, Hennelly SP, Hofacket IL, Patel TR, Sanbonmatsu KY (2020) Zinc-finger protein CNBP alters the 3-D structure of lncRNA Braveheart in solution. Nat Commun 11:148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172:393–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193:651–669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laue TM, Stafford WF III (1999) Modern Applications of analytical ultracentrifugation. Annu Rev Biophys Biomol Struct 28:75–100

    CAS  PubMed  Google Scholar 

  • Launer-Felty K, Wong CJ, Cole JL (2015) Structural analysis of adenovirus VAI RNA defines the mechanism of inhibition of PKR. Biophys J 108:748–757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lebowitz J, Lewis MS, Schuck P (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11:2067–2079

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leisegang MS, Fork C, Josipovic I, Richter FM, Preussner J, Hu J, Miller MJ, Epah J, Hofmann P, Gunther S, Moll F, Valasarajan C, Heidler J, Ponomareva Y, Freiman TM, Maegdefessel L, Plate KH, Mittelbronn M, Uchida S, Kunne C, Stellos K, Schermuly RT, Weissmann N, Devraj K, Wittig I, Boon RA, Dimmeler S, Pullamsetti SS, Looso M, Miller FJ Jr, Brandes RP (2017) Long noncoding RNA MANTIS facilitates endothelial angiogenic function. Circulation 136:65–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Ge LL, Li PP, Wang Y, Sun MX, Huang L, Ishag H, Di DD, Shen ZQ, Fan WX, Mao X (2013) The DEAD-box RNA helicase DDX5 acts as a positive regulator of Japanese encephalitis virus replication by binding to viral 3′ UTR. Antivir Res 100:487–499

    CAS  PubMed  Google Scholar 

  • Liu J, Yadav S, Andya J, Demeule B, Shire SJ (2015) Analytical ultracentrifugation and its role in development and research of therapeutical proteins. Methods Enzymol 562:441–476

    CAS  PubMed  Google Scholar 

  • Liu F, Somarowthu S, Pyle AM (2017) Visualizing the secondary and tertiary architectural domains of lncRNA RepA. Nat Chem Biol 13:282–289

    PubMed  PubMed Central  Google Scholar 

  • Liu M, Zhang H, Li Y, Wang R, Li Y, Zhang H, Ren D, Liu H, Kang C, Chen J (2018) HOTAIR, a long noncoding RNA, is a marker of abnormal cell cycle regulation in lung cancer. Cancer Sci 109:2717–2733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loughrey D, Watters KE, Settle AH, Lucks JB (2014) SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res 42:e165

    PubMed Central  Google Scholar 

  • Lukavsky PJ (2009) Structure and function of HCV IRES domains. Virus Res 139:166–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacGregor IK, Anderson AL, Laue TM (2004) Fluorescence detection for the XLI analytical ultracentrifuge. Biophys Chem 108:165–185

    CAS  PubMed  Google Scholar 

  • Matte SL, Laue TM, Cote RH (2012) Characterization of conformational changes and protein-protein interactions of rod photoreceptor phosphodiesterase (PDE6). J Biol Chem 287:20111–20121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15 Spec No 1:R17–R29

  • May NA, Wang Q, Balbo A, Konrad SL, Buchli R, Hildebrand WH, Schuck P, Hudson AW (2014) Human herpesvirus 7 U21 tetramerizes to associate with class I major histocompatibility complex molecules. J Virol 88:3298–3308

    PubMed  PubMed Central  Google Scholar 

  • Mayo CB, Cole JL (2017) Interaction of PKR with single-stranded RNA. Sci Rep 7:3335

    PubMed  PubMed Central  Google Scholar 

  • Meier-Stephenson V, Mrozowich T, Pham M, Patel TR (2018) DEAD-box helicases: the Yin and Yang roles in viral infections. Biotechnol Genet Eng Rev 34:3–32

    CAS  PubMed  Google Scholar 

  • Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307

    CAS  PubMed  Google Scholar 

  • Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM (2005) RNA structure analysis at single nucleotide resolution by selective 2’-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127:4223–4231

    CAS  PubMed  Google Scholar 

  • Mitra S (2009) Using analytical ultracentrifugation (AUC) to measure global conformational changes accompanying equilibrium tertiary folding of RNA molecules. Methods Enzymol 469:209–236

    CAS  PubMed  Google Scholar 

  • Mitra S, Demeler B (2020) Probing RNA–protein interactions and RNA compaction by sedimentation velocity analytical ultracentrifugation. Methods Mol Biol 2113:281–317

    CAS  PubMed  Google Scholar 

  • Mrozowich T, McLennan S, Overduin M, Patel TR (2018) Structural studies of macromolecules in solution using small angle X-ray scattering. J Vis Exp. https://doi.org/10.3791/58538

  • Mrozowich T, Henrickson A, Demeler B, Patel TR (2020) Nanoscale structure determination of murray valley encephalitis and powassan virus non-coding RNAs. Viruses 12:190

    CAS  PubMed Central  Google Scholar 

  • Novikova IV, Hennelly SP, Sanbonmatsu KY (2012) Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res 40:5034–5051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novikova IV, Hennelly SP, Tung CS, Sanbonmatsu KY (2013) Rise of the RNA machines: exploring the structure of long non-coding RNAs. J Mol Biol 425:3731–3746

    CAS  PubMed  Google Scholar 

  • Patel TR, Winzor DJ, Scott DJ (2016) Analytical ultracentrifugation: a versatile tool for the characterisation of macromolecular complexes in solution. Methods (San Diego, Calif) 95:55–61

    CAS  Google Scholar 

  • Patel GK, Khan MA, Bhardwaj A, Srivastava SK, Zubair H, Patton MC, Singh S, Khushman M, Singh AP (2017) Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br J Cancer 116:609–619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel TR, Chojnowski G, Astha KA, McKenna SA, Bujnicki JM (2017) Structural studies of RNA-protein complexes: a hybrid approach involving hydrodynamics, scattering, and computational methods. Methods (San Diego, Calif) 118–119:146–162

    Google Scholar 

  • Perard J, Leyrat C, Baudin F, Drouet E, Jamin M (2013) Structure of the full-length HCV IRES in solution. Nat Commun 4:1612

    PubMed  Google Scholar 

  • Perkins SJ, Nan R, Li K, Khan S, Abe Y (2011) Analytical ultracentrifugation combined with X-ray and neutron scattering: experiment and modelling. Methods (San Diego, Calif) 54:181–199

    CAS  Google Scholar 

  • Philo JS (1997) An improved function for fitting sedimentation velocity data for low-molecular-weight solutes. Biophys J 72:435–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Planken KL, Colfen H (2010) Analytical ultracentrifugation of colloids. Nanoscale 2:1849–1869

    CAS  PubMed  Google Scholar 

  • Reich PR, Forget BG, Weissman SM (1966) RNA of low molecular weight in KB cells infected with adenovirus type 2. J Mol Biol 17:428–439

    CAS  PubMed  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    CAS  PubMed  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romani AM (2011) Cellular magnesium homeostasis. Arch Biochem Biophys 512:1–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe AJ (2013) Sedimentation equilibrium analytical ultracentrifugation. In: Roberts GCK (ed) Encyclopedia of biophysics. Springer, Berlin, pp 2283–2289

    Google Scholar 

  • Sallam T, Sandhu J, Tontonoz P (2018) Long noncoding RNA discovery in cardiovascular disease: decoding form to function. Circ Res 122:155–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarropoulos I, Marin R, Cardoso-Moreira M, Kaessmann H (2019) Developmental dynamics of lncRNAs across mammalian organs and species. Nature 571:510–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz SU, Grote P, Herrmann BG (2016) Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci 73:2491–2509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuck P (1998) Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophys J 75:1503–1512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuck P (2013) Analytical ultracentrifugation as a tool for studying protein interactions. Biophys Rev 5:159–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster TM, Toedt JM (1996) New revolutions in the evolution of analytical ultracentrifugation. Curr Opin Struct Biol 6:650–658

    CAS  PubMed  Google Scholar 

  • Shah PS, Link N, Jang GM, Sharp PP, Zhu T, Swaney DL, Johnson JR, Von Dollen J, Ramage HR, Satkamp L, Newton B, Huttenhain R, Petit MJ, Baum T, Everitt A, Laufman O, Tassetto M, Shales M, Stevenson E, Iglesias GN, Shokat L, Tripathi S, Balasubramaniam V, Webb LG, Aguirre S, Willsey AJ, Garcia-Sastre A, Pollard KS, Cherry S, Gamarnik AV, Marazzi I, Taunton J, Fernandez-Sesma A, Bellen HJ, Andino R, Krogan NJ (2018) Comparative flavivirus-host protein interaction mapping reveals mechanisms of dengue and Zika virus pathogenesis. Cell 175(1931–1945):e1918

    Google Scholar 

  • Sherwood PJ, Stafford WF (2016) SEDANAL: model-dependent and model independent analysis of sedimentation data. In: Uchiyama S, Arisaka F, Stafford WF, Laue TM (eds) Analytical ultracentrifugation instrumentation, software, and applications. Springer Japan, Tokyo, pp 81–102

    Google Scholar 

  • Shirahama S, Miki A, Kaburaki T, Akimitsu N (2020) Long non-coding RNAs involved in pathogenic infection. Front Genet 11:454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smola MJ, Rice GM, Busan S, Siegfried NA, Weeks KM (2015) Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat Protoc 10:1643–1669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soderlund H, Pettersson U, Vennstrom B, Philipson L, Mathews MB (1976) A new species of virus-coded low molecular weight RNA from cells infected with adenovirus type 2. Cell 7:585–593

    CAS  PubMed  Google Scholar 

  • Somarowthu S, Legiewicz M, Chillon I, Marcia M, Liu F, Pyle AM (2015) HOTAIR forms an intricate and modular secondary structure. Mol Cell 58:353–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6:846–856

    CAS  PubMed  Google Scholar 

  • St Laurent G, Wahlestedt C, Kapranov P (2015) The landscape of long noncoding RNA classification. Trends Genet 31:239–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stetefeld J, McKenna SA, Patel TR (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8:409–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svedberg T, Pedersen KO (1940) The ultracentrifuge. Oxford University Press, Oxford

    Google Scholar 

  • Thomis DC, Samuel CE (1993) Mechanism of interferon action: evidence for intermolecular autophosphorylation and autoactivation of the interferon-induced, RNA-dependent protein kinase PKR. J Virol 67:7695–7700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tingting P, Caiyun F, Zhigang Y, Pengyuan Y, Zhenghong Y (2006) Subproteomic analysis of the cellular proteins associated with the 3’ untranslated region of the hepatitis C virus genome in human liver cells. Biochem Biophys Res Commun 347:683–691

    PubMed  Google Scholar 

  • Uchida S, Dimmeler S (2015) Long noncoding RNAs in cardiovascular diseases. Circ Res 116:737–750

    CAS  PubMed  Google Scholar 

  • Uchiyama S, Noda M, Krayukhina E (2018) Sedimentation velocity analytical ultracentrifugation for characterization of therapeutic antibodies. Biophys Rev 10:259–269

    CAS  PubMed  Google Scholar 

  • Unzai S (2018) Analytical ultracentrifugation in structural biology. Biophys Rev 10:229–233

    CAS  PubMed  Google Scholar 

  • VanOudenhove J, Anderson E, Krueger S, Cole JL (2009) Analysis of PKR structure by small-angle scattering. J Mol Biol 387:910–920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villordo SM, Filomatori CV, Sanchez-Vargas I, Blair CD, Gamarnik AV (2015) Dengue virus RNA structure specialization facilitates host adaptation. PLoS Pathog 11:e1004604

    PubMed  PubMed Central  Google Scholar 

  • Vopalensky V, Khawaja A, Roznovsky L, Mrazek J, Masek T, Pospisek M (2018) Characterization of hepatitis C virus IRES Quasi species—from the individual to the pool. Front Microbiol 9:731

    PubMed  PubMed Central  Google Scholar 

  • Wan Y, Qu K, Ouyang Z, Kertesz M, Li J, Tibshirani R, Makino DL, Nutter RC, Segal E, Chang HY (2012) Genome-wide measurement of RNA folding energies. Mol Cell 48:169–181

    PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhao Y, Zhang Y (2017) Viral lncRNA: a regulatory molecule for controlling virus life cycle. Noncoding RNA Res 2:38–44

    PubMed  PubMed Central  Google Scholar 

  • Wawra SE, Onishchukov G, Maranska M, Eigler S, Walter J, Peukert W (2019) A multi-wavelength emission detector for analytical ultracentrifugation. Nanoscale Adv 1:4422–4432

    CAS  Google Scholar 

  • Wolff M, Unuchek D, Zhang B, Gordeliy V, Willbold D, Nagel-Steger L (2015) Amyloid beta oligomeric species present in the lag phase of amyloid formation. PLoS ONE 10:e0127865

    PubMed  PubMed Central  Google Scholar 

  • Wong CJ, Launer-Felty K, Cole JL (2011) Analysis of PKR–RNA interactions by sedimentation velocity. Methods Enzymol 488:59–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30:167–174

    CAS  PubMed  Google Scholar 

  • Yang TC, Catalano CE, Maluf NK (2015) Analytical ultracentrifugation as a tool to study nonspecific protein-DNA interactions. Methods Enzymol 562:305–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao RW, Wang Y, Chen LL (2019) Cellular functions of long noncoding RNAs. Nat Cell Biol 21:542–551

    CAS  PubMed  Google Scholar 

  • Yousefi H, Maheronnaghsh M, Molaei F, Mashouri L, Reza Aref A, Momeny M, Alahari SK (2020) Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene 39:953–974

    CAS  PubMed  Google Scholar 

  • Zampetaki A, Albrecht A, Steinhofel K (2018) Long non-coding RNA structure and function: is there a link? Front Physiol 9:1201

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Pearson JZ, Gorbet GE, Colfen H, Germann MW, Brinton MA, Demeler B (2017) Spectral and hydrodynamic analysis of West Nile virus RNA–protein interactions by multi-wavelength sedimentation velocity in the analytical ultracentrifuge. Anal Chem 89:862–870

    CAS  PubMed  Google Scholar 

  • Zhang X, Hamblin MH, Yin KJ (2017) The long noncoding RNA Malat 1: its physiological and pathophysiological functions. RNA Biol 14:1705–1714

    PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Xu J (2018) Synovial fluid-derived exosomal lncRNA PCGEM1 as biomarker for the different stages of osteoarthritis. Int Orthop 42:2865–2872

    PubMed  Google Scholar 

  • Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Brautigam CA, Ghirlando R, Schuck P (2013) Overview of current methods in sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation. Curr Protoc Protein Sci Chapter 20(Unit20):12

    CAS  Google Scholar 

Download references

Acknowledgements

MDB is funded by Alberta Innovates Strategic Research Projects to TRP. MQS is funded by the Canada Research Chairs program to TRP. TM is supported by NSERC PGS-D fellowship. DLG is supported by NSERC Discovery grant to TRP. TRP is a Canada Research Chair in RNA and Protein Biophysics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trushar R. Patel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: Analytical Ultracentrifugation 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badmalia, M.D., Siddiqui, M.Q., Mrozowich, T. et al. Analytical ultracentrifuge: an ideal tool for characterization of non-coding RNAs. Eur Biophys J 49, 809–818 (2020). https://doi.org/10.1007/s00249-020-01470-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-020-01470-9

Keywords

Navigation