Skip to main content

Advertisement

Log in

Evaluation of the impacts of climate change on streamflow through hydrological simulation and under downscaling scenarios: case study in a watershed in southeastern Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Among the problems related to water security, the effects of climate change on water availability stand out. Researchers have used hydrological models integrated with climate models in order to predict the streamflow behaviour in different hydrographic basins. This work aimed to analyse future climate scenarios for the Ribeirão do Lobo River Basin, located in the state of São Paulo, Brazil. The stochastic generator PGECLIMA_R was used in the simulation of climate data, which were used as input data in the hydrological model SMAP, after it was calibrated and validated for the study site. In all, five future scenarios were generated, with scenarios A, B, C and D projected based on the 5th report of the IPCC and scenario E based on the trend of climate data in the region. Among the scenarios generated, scenario D, which considers an increase of 4.8 °C in air temperature and a reduction of 10% in rainfall, is responsible for the worst water condition in the basin and can reduce up to 72.41% of the average flow and up to 55.50%, 54.18% and 38.17% of the low flow parameters Q90%, Q95% and Q7,10, respectively, until the end of the twenty-first century. However, the E scenario also becomes a matter of concern, since it was responsible for greater increases in temperature and greater reductions in rainfall and, consequently, more drastic monthly reductions in streamflow, which may negatively impact water resources and affect the various uses of water in the Ribeirão do Lobo River Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acharya, N., Frei, A., Chen, J., De Cristofaro, L., & Owens, E. M. (2017). Evaluating stochastic precipitation generators for climate change impact studies of New York City’s primary water supply. Journal of Hydrometeorology, 18(3), 879–896. https://doi.org/10.1175/JHM-D-16-0169.1.

    Article  Google Scholar 

  • Adam, K., & Collischonn, W. (2013). Análise dos Impactos de Mudanças Climáticas nos Regimes de Precipitação e Vazão na Bacia Hidrográfica do Rio Ibicuí. Revista Brasileira de Recursos Hídricos, 18(3), 69–79. https://doi.org/10.21168/rbrh.v18n3.p69-79.

    Article  Google Scholar 

  • Alvarenga, L. A., de Mello, C. R., Colombo, A., Cuartas, L. A., & Chou, S. C. (2016). Hydrological responses to climate changes in a headwater watershed. Ciência e Agrotecnologia, 40(6), 647–657. https://doi.org/10.1590/1413-70542016406027716.

    Article  Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507.

    Article  Google Scholar 

  • Andrade, M. A., de Mello, C. R., & Beskow, S. (2013). Simulação hidrológica em uma bacia hidrográfica representativa dos Latossolos na região Alto Rio Grande, MG. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(1), 69–76. https://doi.org/10.1590/S1415-43662013000100010.

    Article  Google Scholar 

  • Anjinho, P. D. S. (2019). Modelagem distribuída da poluição pontual e difusa dos sistemas hídricos da bacia hidrográfica do Ribeirão do Lobo, Itirapina – SP [Dissertação ( Mestrado em Ciências da Engenharia Ambiental)]. Escola de engenharia de São Carlos, Universidade de São Paulo.

  • Arnell, N. W., & Gosling, S. N. (2013). The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology, 486, 351–364. https://doi.org/10.1016/j.jhydrol.2013.02.010.

    Article  Google Scholar 

  • Bárdossy, A., & Pegram, G. (2011). Downscaling precipitation using regional climate models and circulation patterns toward hydrology: downscaling precipitation using RCMS. Water Resources Research, 47(4). https://doi.org/10.1029/2010WR009689.

  • Bokke, A. S., Taye, M. T., Willems, P., & Siyoum, S. A. (2017). Validation of general climate models (GCMs) over upper Blue Nile River Basin, Ethiopia. Atmospheric and Climate Sciences, 07(01), 65–75. https://doi.org/10.4236/acs.2017.71006.

    Article  Google Scholar 

  • BRASIL. Ministério do Meio Ambiente. (2016). Plano Nacional de Adaptação à Mudança do Clima: volume 1 : estratégia geral : portaria MMA no 150 de 10 de maio de 2016. https://www.mma.gov.br/images/arquivo/80182/PNA_Volume%20I.pdf. Accessed 6 Feb 2019.

  • Bucak, T., Trolle, D., Tavşanoğlu, Ü. N., Çakıroğlu, A. İ., Özen, A., Jeppesen, E., & Beklioğlu, M. (2018). Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir. The Science of the Total Environment, 621, 802–816. https://doi.org/10.1016/j.scitotenv.2017.11.258.

    Article  CAS  Google Scholar 

  • Burn, D. H. (2008). Climatic influences on streamflow timing in the headwaters of the Mackenzie River Basin. Journal of Hydrology, 352(1–2), 225–238. https://doi.org/10.1016/j.jhydrol.2008.01.019.

    Article  Google Scholar 

  • Chen, Y., & Zhai, P. (2017). Revisiting summertime hot extremes in China during 1961-2015: Overlooked compound extremes and significant changes: overlooked changes of hot extremes. Geophysical Research Letters, 44(10), 5096–5103. https://doi.org/10.1002/2016GL072281.

    Article  Google Scholar 

  • Chen, J., Brissette, F. P., Leconte, R., & Caron, A. (2012). A versatile weather generator for daily precipitation and temperature. Transactions of the ASABE, 55(3), 895–906. https://doi.org/10.13031/2013.41522.

    Article  Google Scholar 

  • Cosgrove, W. J., & Loucks, D. P. (2015). Water management: Current and future challenges and research directions: water management research challenges. Water Resources Research, 51(6), 4823–4839. https://doi.org/10.1002/2014WR016869.

    Article  Google Scholar 

  • Couture, R.-M., Moe, S. J., Lin, Y., Kaste, Ø., Haande, S., & Lyche Solheim, A. (2018). Simulating water quality and ecological status of Lake Vansjø, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network. Science of the Total Environment, 621, 713–724. https://doi.org/10.1016/j.scitotenv.2017.11.303.

    Article  CAS  Google Scholar 

  • de Camargo, A. P. (1971). Balanço hídrico no Estado de São Paulo. Campinas: Instituto Agronômico.

  • de Camargo, A. P., Marim, F. R., Sentelhas, P. C., & Picini, A. G. (1999). Ajuste da equação de Thornthwaite para estimar a evapotranspiração potencial em climas áridos e superúmidos, com base na amplitude térmica diária. Revista Brasileira de Agrometeorologia, 7(2), 251–257.

    Google Scholar 

  • de Oliveira, V. A., de Mello, C. R., Viola, M. R., & Srinivasan, R. (2017). Assessment of climate change impacts on streamflow and hydropower potential in the headwater region of the Grande river basin, southeastern Brazil: climate change impacts on streamflow and hydropower potential. International Journal of Climatology, 37(15), 5005–5023. https://doi.org/10.1002/joc.5138.

    Article  Google Scholar 

  • Dinpashoh, Y., Singh, V. P., Biazar, S. M., & Kavehkar, S. (2019). Impact of climate change on streamflow timing (case study: Guilan Province). Theoretical and Applied Climatology, 138(1–2), 65–76. https://doi.org/10.1007/s00704-019-02810-2.

    Article  Google Scholar 

  • dos Santos, F. M., de Oliveira, R. P., & Mauad, F. F. (2018). Lumped versus distributed hydrological modeling of the Jacaré-Guaçu Basin, Brazil. Journal of Environmental Engineering, 144(8), 04018056. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001397.

    Article  Google Scholar 

  • Dudley, R. W., Hodgkins, G. A., McHale, M. R., Kolian, M. J., & Renard, B. (2017). Trends in snowmelt-related streamflow timing in the conterminous United States. Journal of Hydrology, 547, 208–221. https://doi.org/10.1016/j.jhydrol.2017.01.051.

    Article  Google Scholar 

  • Estigoni, M. V., Matos, A. J. S., & Mauad, F. F. (2014). Assessment of the accuracy of different standard methods for determining reservoir capacity and sedimentation. Journal of Soils and Sediments, 14(7), 1224–1234. https://doi.org/10.1007/s11368-013-0816-x.

    Article  Google Scholar 

  • Ganguli, P., Nandamuri, Y. R., & Chatterjee, C. (2020). Analysis of persistence in the flood timing and the role of catchment wetness on flood generation in a large river basin in India. Theoretical and Applied Climatology, 139(1–2), 373–388. https://doi.org/10.1007/s00704-019-02964-z.

    Article  Google Scholar 

  • Giuntoli, I., Vidal, J.-P., Prudhomme, C., & Hannah, D. M. (2015). Future hydrological extremes: the uncertainty from multiple global climate and global hydrological models. Earth System Dynamics, 6(1), 267–285. https://doi.org/10.5194/esd-6-267-2015.

    Article  Google Scholar 

  • Gosling, S. N., Zaherpour, J., Mount, N. J., Hattermann, F. F., Dankers, R., Arheimer, B., Breuer, L., Ding, J., Haddeland, I., Kumar, R., Kundu, D., Liu, J., van Griensven, A., Veldkamp, T. I. E., Vetter, T., Wang, X., & Zhang, X. (2017). A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C. Climatic Change, 141(3), 577–595. https://doi.org/10.1007/s10584-016-1773-3.

    Article  Google Scholar 

  • Grizzetti, B., Lanzanova, D., Liquete, C., Reynaud, A., & Cardoso, A. C. (2016). Assessing water ecosystem services for water resource management. Environmental Science & Policy, 61, 194–203. https://doi.org/10.1016/j.envsci.2016.04.008.

    Article  Google Scholar 

  • IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar5/wg1/. Accessed 13 July 2018.

  • Junior, P., & Mauad, F. (2015). Simulação dos Impactos das Mudanças Climáticas na Vazão da Bacia do Ribeirão do Feijão—SP. Revista Brasileira de Recursos Hídricos, 20(3), 741–751. https://doi.org/10.21168/rbrh.v20n3.p741-751.

    Article  Google Scholar 

  • Kendall, M. G. (1975). Rank correlation methods. London: Charles Griffin 202pp.

    Google Scholar 

  • Leite, M. d. L., Dal Gobbo, B. L., Virgens Filho, J. S., & Pobb, K. (2014). Análise preliminar da incidência de meningite no município de Ponta Grossa-PR, por meio de modelos matemáticos e cenários climáticos futuros. Revista Brasileira de Climatologia, 14(1). https://doi.org/10.5380/abclima.v14i1.35771.

  • Lopes, J. E. G. (1982). SMAP - A Simplified Hydrologic Model in Applied Modeling in Catchment Hydrology. Water Resourses Publications. http://agris.fao.org/agris-search/search.do?recordID=US201302608054. Accessed 10 July 2017.

  • Lopes, J. E. G. (1999). Smap-Manual.rtf. http://webcache.googleusercontent.com/search?q=cache:_HvILQ11AU8J:pha.poli.usp.br/LeArq.aspx%3Fid_arq%3D3596+&cd=1&hl=pt-BR&ct=clnk&gl=br. Accessed 10 July 2017.

  • Mann, H. B. (1945). Non-parametric test against trend. Econometrica, 13, 245–225.

    Article  Google Scholar 

  • Marcos Junior, A. D., Da Silva Silveira, C., Das Chagas Vasconcelos Júnior, F., Guimarães, S. O., & Da Costa, J. M. F. (2018). Classificação Climática de Thornthwaite para o Brasil com Base em Cenários de Mudanças Climáticas do IPCC-AR5. Revista Brasileira de Meteorologia, 33(4), 647–664. https://doi.org/10.1590/0102-7786334007.

    Article  Google Scholar 

  • Melo, L. C., Sanquetta, C. R., Corte, A. P. D., & Virgens Filho, J. S. d. (2015). Cenários climáticos futuros para o paraná: oportunidades para o setor florestal. Revista Brasileira de Climatologia, 16. https://doi.org/10.5380/abclima.v16i0.41149.

  • Moriasi, D. N., Arnold, J. G., Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153.

    Article  Google Scholar 

  • Motovilov, Gottschalk, Engeland, & Rodhe. (1999). Validation of a distributed hydrological model against spatial observations. Agricultural and Forest Meteorology, 98–99, 257–277.

    Article  Google Scholar 

  • Mouratiadou, I., Biewald, A., Pehl, M., Bonsch, M., Baumstark, L., Klein, D., Popp, A., Luderer, G., & Kriegler, E. (2016). The impact of climate change mitigation on water demand for energy and food: an integrated analysis based on the shared socioeconomic pathways. Environmental Science & Policy, 64, 48–58. https://doi.org/10.1016/j.envsci.2016.06.007.

    Article  Google Scholar 

  • Mukundan, R., Acharya, N., Gelda, R. K., Frei, A., & Owens, E. M. (2019). Modeling streamflow sensitivity to climate change in New York City water supply streams using a stochastic weather generator. Journal of Hydrology: Regional Studies, 21, 147–158. https://doi.org/10.1016/j.ejrh.2019.01.001.

    Article  Google Scholar 

  • Netto, C. F., Virgens Filho, J. S., & Neves, G. L. (2018). Análise da erosividade da chuva no estado do Paraná e cenários futuros impactados por mudanças climáticas globais. Revista Brasileira de Climatologia, 22, 19.

    Article  Google Scholar 

  • Neves, G. L., Virgens Filho, J. S., Leite, M. d. L., & Mauad, F. F. (2018). Disponibilidade hídrica do solo, em Ponta Grossa-PR, sob diferentes cenários de mudanças climáticas globais. Revista Brasileira de Climatologia, 23, 18.

    Article  Google Scholar 

  • Nicks, A. D., & Harp, J. F. (1980). Stochastic generation of temperature and solar radiation data. Journal of Hydrology, 48(1), 1–17. https://doi.org/10.1016/0022-1694(80)90062-1.

    Article  Google Scholar 

  • Nóbrega, M. T., Collischonn, W., Tucci, C. E. M., & Paz, A. R. (2011). Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil. Hydrology and Earth System Sciences, 15(2), 585–595. https://doi.org/10.5194/hess-15-585-2011.

    Article  Google Scholar 

  • Oliveira, V. d. P. S. d., Zanetti, S. S., & Pruski, F. F. (2005). CLIMABR parte I: modelo para a geração de séries sintéticas de precipitação. Revista Brasileira de Engenharia Agrícola e Ambiental, 9(3), 348–355. https://doi.org/10.1590/S1415-43662005000300009.

    Article  Google Scholar 

  • ONS. (2007). Novo modelo de Previsão de vazões com Informação de Precipitação para o Trecho incremental de Itaipu. Nota Técnica. https://www2.aneel.gov.br/aplicacoes/consulta_publica/documentos/NT_%20173-2007_Modelo_SMAP-MEL_Itaipu.pdf. Accessed 30 Nov 2017.

  • ONS. (2008). Metodologia para a Previsão de Vazões uma Semana à Frente na Bacia do Alto/Médio rio Grande. Nota Técnica no.139/2008. http://www2.aneel.gov.br/aplicacoes/consulta_publica/documentos/NT%20139-2008%20R1.pdf. Accessed 30 Nov 2017.

  • ONS, & HICON. (2012). Aplicação de Modelos de Previsão a Curto Prazo na Sub-bacia do Alto Rio Paranaíba. Relatório Final. https://www2.aneel.gov.br/aplicacoes/consulta_publica/documentos/Relatorio%20Final%20-%20Alto%20Parana%C3%ADba%20R00F.pdf. Accessed 30 Nov 2017.

  • PBMC. (2014). Base científica das mudanças climáticas. Contribuição do Grupo de Trabalho 1 do Painel Brasileiro de Mudanças Climáticas ao Primeiro Relatório da Avaliação Nacional sobre Mudanças Climáticas. Rio de Janeiro: Universidade Federal do Rio de Janeiro.

  • Pereira, A. R., Angelocci, L. R., & Sentelhas, P. C. (2007). Meteorologia Agrícola. (Edição Revista e Ampliada., p. 125). Piracicaba: Escola Superior de Agricultura “Luiz de Queiroz” – USP, Piracicaba.

  • Pereira, D. d. R., Martinez, M. A., Almeida, A. Q. d., Pruski, F. F., Silva, D. D. d., & Zonta, J. H. (2014). Hydrological simulation using SWAT model in headwater basin in Southeast Brazil. Engenharia Agrícola, 34(4), 789–799. https://doi.org/10.1590/S0100-69162014000400018.

    Article  Google Scholar 

  • Periotto, N. A., Tundisi, J. G., Periotto, N. A., & Tundisi, J. G. (2013). Ecosystem services of UHE Carlos Botelho (Lobo/Broa): a new approach for management and planning of dams multiple-uses. Brazilian Journal of Biology, 73(3), 471–482. https://doi.org/10.1590/S1519-69842013000300003.

    Article  CAS  Google Scholar 

  • Pumo, D., Caracciolo, D., Viola, F., & Noto, L. V. (2016). Climate change effects on the hydrological regime of small non-perennial river basins. Science of the Total Environment, 542, 76–92. https://doi.org/10.1016/j.scitotenv.2015.10.109.

    Article  CAS  Google Scholar 

  • Richardson, C. W., & Wright, D. A. (1984). WGEN: A model for generating daily weather variables. ARS (USA), 80.

  • Rodrigues, N. C. (2013). Modelagem da disponibilidade hídrica natural na bacia do rio Paracatu em cenário de mudanças climáticas. Dissertação (Mestrado em Meteorologia Agrícola). https://www.locus.ufv.br/handle/123456789/5260. Accessed 6 Feb 2018.

  • Semenov, M. (2008). Simulation of extreme weather events by a stochastic weather generator. Climate Research, 35, 203–212. https://doi.org/10.3354/cr00731.

    Article  Google Scholar 

  • Semenov, M. A., & Barrow, E. M. (1997). Use of a stochastic weather generator in the development of climate changes scenarios. Climatic Change, 35(4), 397–414. https://doi.org/10.1023/A:1005342632279.

    Article  Google Scholar 

  • Sgarbossa, C. K., & Virgens Filho, J. S. d. (2020). Solar fraction used in water heating systems for south Brazilian climate changes scenarios. Acta Scientiarum. Technology, 42, e48583. https://doi.org/10.4025/actascitechnol.v42i1.48583.

    Article  Google Scholar 

  • Tejadas, B. E., Bravo, J. M., Sanagiotto, D. G., Tassi, R., & Marques, D. M. L. d. M. (2016). Projeções de Vazão Afluente à Lagoa Mangueira com Base em Cenários de Mudanças Climáticas. Revista Brasileira de Meteorologia, 31(3), 262–272. https://doi.org/10.1590/0102-778631320150139.

    Article  Google Scholar 

  • Teklesadik, A. D., Alemayehu, T., van Griensven, A., Kumar, R., Liersch, S., Eisner, S., Tecklenburg, J., Ewunte, S., & Wang, X. (2017). Inter-model comparison of hydrological impacts of climate change on the Upper Blue Nile basin using ensemble of hydrological models and global climate models. Climatic Change, 141(3), 517–532. https://doi.org/10.1007/s10584-017-1913-4.

    Article  Google Scholar 

  • Virgens Filho, J. S. d., Oliveira, R. B. d., Leite, M. d. L., & Tsukahara, R. Y. (2013). Desempenho dos modelos CLIGEN, LARS-WG e PGECLIMA_R na simulação de séries diárias de temperatura máxima do ar para localidades do estado do Paraná. Engenharia Agrícola, 33(3), 538–547. https://doi.org/10.1590/S0100-69162013000300010.

    Article  Google Scholar 

  • Virgens Filho, J. S. d., Leite, M. d. L., Dal Gobbo, B. L., Pobb, K., & Fruteira, R. S. (2014). Analysis of the accuracy of daily series of global solar radiation simulated by the weather generator PGECLIMA-R, in the state of Parana, Brazil. Revista Brasileira de Geografia Física, 7(1). https://doi.org/10.5935/1984-2295.20140005.

  • Virgílio, R. M. (2018). Operação de Usinas Hidrelétricas de Regularização sob Condições de Mudanças Climáticas: Estudo de caso da UHE Três Marias [Dissertação ( Mestrado em Engenharia de Energia)]. Itajubá: Universidade Federal de Itajubá.

    Google Scholar 

  • Von Sperling, M. (2005). Introdução à qualidade das águas e ao tratamento de esgotos. Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental - UFMG. 

  • Wasko, C., Nathan, R., & Peel, M. C. (2020a). Trends in global flood and Streamflow timing based on local water year. Water Resources Research, 56(8). https://doi.org/10.1029/2020WR027233.

  • Wasko, C., Nathan, R., & Peel, M. C. (2020b). Changes in antecedent soil moisture modulate flood seasonality in a changing climate. Water Resources Research, 56(3). https://doi.org/10.1029/2019WR026300.

  • Watts, G., Battarbee, R. W., Bloomfield, J. P., Crossman, J., Daccache, A., Durance, I., Elliott, J. A., Garner, G., Hannaford, J., Hannah, D. M., Hess, T., Jackson, C. R., Kay, A. L., Kernan, M., Knox, J., Mackay, J., Monteith, D. T., Ormerod, S. J., Rance, J., Stuart, M. E., Wade, A. J., Wade, S. D., Weatherhead, K., Whitehead, P. G., & Wilby, R. L. (2015). Climate change and water in the UK – past changes and future prospects. Progress in Physical Geography: Earth and Environment, 39(1), 6–28. https://doi.org/10.1177/0309133314542957.

    Article  Google Scholar 

  • Wrege, M. S., Caramori, P. H., Garrastazu, M. C., Fritzons, E., Partala, A., & Christensen, G. L. (2016). Plantios florestais com pinus no estado do Paraná e os novos cenários definidos pelas mudanças climáticas globais. Revista do Instituto Florestal, 28(2), 159–175. https://doi.org/10.24278/2178-5031.201628206.

    Article  Google Scholar 

Download references

Funding

The study was supported by the Coordination for Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPq) and Araucária Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Leite Neves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, G.L., Barbosa, M.A.G.A., Anjinho, P. et al. Evaluation of the impacts of climate change on streamflow through hydrological simulation and under downscaling scenarios: case study in a watershed in southeastern Brazil. Environ Monit Assess 192, 707 (2020). https://doi.org/10.1007/s10661-020-08671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08671-x

Keywords

Navigation