Skip to main content

Advertisement

Log in

Development of a sustainable decision framework for the implementation of end-of-life (EoL) options for the railcar industry

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The concept of sustainability and circular economy is crucial in the recovery of products that have reached the end-of-life (EoL). However, lack of a suitable framework for the recovery products at their EoL in the rail industry is a constraint in achieving a sustainable circular economy. There has been a growing concern about the environmental impact caused by railcar components that have reached their end-of-life. Hence, this study provides a sustainable decision framework for the selection and implementation of the EoL options for railcar components. Using the railcar bogie as a case study, the EoL recovery processes identified, namely refurbishment, reuse, recycling, and remanufacturing were incorporated into the decision model. The recovery rate of the steel material employed for the development of the bogie transom, bogie gear box and bogie motor were obtained as 95%, 96% and 98%, respectively, while aluminum material for the development of the brake cylinder also boast of high rate recovery (90%) at the end of its life cycle. Furthermore, the mathematical models for the estimation of the cost relating to the identified EoL options were developed in order to project the cost-effectiveness and the profitability of the EoL identified options. The cost implications of the EoL options as well as the projected profit from the cost models were estimated. Recommendations were also made to increase the level of awareness of the circular economy in order to promote economic, environmental sustainability and safe guide public health. It is envisaged that the findings of this work will assist railcar manufacturers, and operators to achieve sustainability in terms of material, energy, economic, social, and environment during the life cycle of a railcar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anthony, C., & Cheung, W. M. (2017). Cost evaluation in design for end-of-life of automobile components. Journal of Remanufacture, 7, 97–111.

    Article  Google Scholar 

  • Berzi, L., Delogu, M., Giorgetti, A., & Pierini, M. (2003). On-field investigation and process modelling of end-of-life vehicles treatment in the context of Italian craft-type authorized treatment facilities. Waste Management, 33, 892–906.

    Article  Google Scholar 

  • Bogue, R. (2007). Design for disassembly: a critical twenty-first century discipline. Assembly Automation, 27(4), 285–289.

    Article  Google Scholar 

  • C. Borralho.(2013). Locomotive Industry in South Africa Improving, s.l.: Engineering news.

  • Castella, P. S., Blanc, I., Ferrer, M. G., Ecabert, B., Wakeman, M., Manson, J. A., et al. (2009). Integrating life cycle costs and environmental impacts of composite rail car-bodies for a Korean train. The International Journal of Life Cycle Assessment, 14, 429–442.

    Article  CAS  Google Scholar 

  • Circular economy: definition, importance and benefits. Available at https://www.europarl.europa.eu/pdfs/news/expert/2015/12/story/20151201STO05603/20151201STO05603_en.pdf. Accessed 8th July, 2020.

  • Colledani, M., & Battaya, O. (2016). A decision support system to manage the quality of end-of-life products in disassembly systems. CIRP Annals, 65(1), 41–44.

    Article  Google Scholar 

  • Cong, L., Zhao, F., & Sutherrland, J. W. (2017). Integration of dismantling operations into a value recovery plan for circular economy. Journal of cleaner production, 149, 378–386.

    Article  Google Scholar 

  • Delogu, M., Del Pero, F., Berzi, L., Pierini, M., & Bonaffini, D. (2016). End-of-Life in the railway sector: analysis of recyclability and recoverability for different vehicle case studies (pp. 1–18). Florence: Department of Industrial Engineering, University of Florence.

    Google Scholar 

  • Duflou, J. (2008). Efficiency and feasibility of product disassembly: A case-based study. Manufacturing Technology, 57, 583–600.

    Google Scholar 

  • Geissdoerfer, M., Savaget, P., & Bocken, N. (2017). The Circular Economy—A new sustainability paradiagm? Journal of cleaner production, 143, 757–768.

    Article  Google Scholar 

  • Gupta, S. M., & McLean, C. R. (1996). Disassembly of products. Computers & Industrial Engineering, 31(1), 225–228.

    Article  Google Scholar 

  • Phuluwa, H. S., Daniyan, I. A., & Mpofu, K. (2020). Sustainable demanufacturing model for promoting circular economy in the rail industry. Procedia CIRP, 90, 25–30.

    Article  Google Scholar 

  • Hatcher, W. G., Ijomah, W., & Windmill, J. (2013). Integrating design for remanufacture into the design process: the operational factors. Journal of cleaner production, 39, 200–208.

    Article  Google Scholar 

  • Daniyan, I. A., Mpofu, K., & Adeodu, A. O. (2020). Development of a diagnostic and prognostic tool for predictive maintenance in the railcar industry. Procedia CIRP, 90, 109–114.

    Article  Google Scholar 

  • Ijomah, W. L., McMahon, C. A., Hammond, G. P., & Newman, S. T. (2007). Development of robust design-for remanufacturing guidelines to further the aims of sustainable development. International Journal of Production Research, 45(18–19), 4513–4536.

    Article  Google Scholar 

  • Jawahir, I., & Bradley, R. (2016). Technological elements of circular economy and principles of 6R-based closed-loop material flow in sustainable manufacturing. Lexington: Elsevier.

    Book  Google Scholar 

  • Johnson, M. R., & Mccarthy, I. R. (2013). Modeling the uncertainity of the remanufacturing process for consideration of extended producer responsibility (EPR). World Academy of Science, Engineering and Technology, 7, 1229–1234.

    Google Scholar 

  • Karakayal, I., Emir-Farinas, H., & Akcal, E. (2010). Pricing and recovery planning for demanufacturing operations with multiple used products and multiple reusable components. Department of Industrial and Systems Engineering, 59, 55–63. (University of Florida, Gainesville, FL 32611- 6595, USA IBM Software Group, 577 Airport Boulevard, Burlingame, CA 94010, USA).

    Google Scholar 

  • Krinke, S., Bossdorf-Zimmer, B., & Goldmann, D. (2006). The Volkswagen-SiCon process: Eco-efficient solution for future end-of-life vehicle treatment. In Proceedings of the Life Cycle Engineering Conference, 2006 (pp. 359–364). Belgium. Available at https://www.mech.kuleuven.be/lce2006/157.pdf. Accessed 16 April 2020.

  • Lieder, M., Asif, F. M. A., Rashid, A., Mihelic, A., & Kotnik, S. (2017). Towards circular economy implementation in manufacturing systems using a multi-method simulation approach to link design and business strategy. The International Journal of Advanced Manufacturing Technology, 5, 1953–1970.

    Article  Google Scholar 

  • Mativenga, P., Agwa-Ejon, J. F., Mbohwa, C., Mohamed Sultan, A., & Shuaib, M. A. (2017). Circular economy ownership: A view from South Africa industry. Procedia Manufacturing, 8, 284–291.

    Article  Google Scholar 

  • Merkisz-Guranowska, A., Merkisz, J., Jacyna, M., Pyza, D., & Stawecka, H. (2014). Rail vehicles recycling. Computers in Railways, 14, 425–436.

    Article  Google Scholar 

  • Merkisz-Guranowska, A., Merkisz, J., Jacyna, M., Stawecka, H., & Wasiak, M. (2014). Recycling guidelines of the rolling stock. In J. Pombo (Ed.), Railway technology: Research, development and maintenance. Scotland: Civil-Comp Press.

    Google Scholar 

  • Moldavska, A., & Welo, T. (2017). The concept of sustainable manufacturing and its definitions: A content-analysis based literature review. Journal of Cleaner Production, 166, 744–755.

    Article  Google Scholar 

  • Murray, A., Skene, K., & Haynes, K. (2017). The circular economy: An interdisciplinary exploration of the concept and application in a global context. Springer Science and Business Media, 140, 369–380.

    Google Scholar 

  • Passengers’ Rail Agency of South Africa (PRASA). (2012). PRASA’s strategic approach to the development of rail transport in South Africa.

  • Sathish, T., Jayaprakash, J., Senthil, P. V., & Saravanan, R. (2017). Multi period disassembly-to-order of end of life product based on schedulin to maximize the profit in reverse logistic operation. FME Transactions, 45, 172–180.

    Article  Google Scholar 

  • Silva, R. R., & Kaewunruen, S. (2017). Recycling of rolling stocks. MDPI, 4(39), 1–18.

    CAS  Google Scholar 

  • Spicer, A. J., & Johnson, M. (2004). Third-party demanufacturing as a solution for extended producer responsibility. Journal of Cleaner Production, 12(1), 37–45.

    Article  Google Scholar 

  • Tolio, T., Bernard, A., Colledani, M., Kara, S., Seliger, G., Duflou, J., et al. (2017). Design, management and control of demanufacturing and remanufacturing systems. CIRP Annals, 66(2), 585–609.

    Article  Google Scholar 

  • Wu, H., Shi, Y., Xia, Q., & Zhu, W. (2014). Effectiveness of the policy of circular economy in China: A DEA-based analysis for the period of 11th five-year-plan. Resource Conservation Recycle, 83(1), 63–75.

    Google Scholar 

  • Yan, X., & Gu, P. (1995). Assembly/disassembly sequence planning for life-cycle cost estimation. Manufacturing Science and Engineering, ASME, MED-2(2)/Mh-3, (2), 935–956.

  • Zhou, M., Caudill, R., Sebastian, D., & Zhang, B. (1999). Multi-lifecycle product recovery for electronic products. Journal of Electronics Manufacturing, 9(01), 1–15.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to Tshwane University of Technology and the Gibela Research Chair for giving me an opportunity to undertake this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humbulani Simon Phuluwa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phuluwa, H.S., Daniyan, I. & Mpofu, K. Development of a sustainable decision framework for the implementation of end-of-life (EoL) options for the railcar industry. Environ Dev Sustain 23, 9433–9453 (2021). https://doi.org/10.1007/s10668-020-01035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-01035-y

Keywords

Navigation