Skip to main content
Log in

Jacobi spectral collocation method for solving fractional pantograph delay differential equations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this study, we mainly discuss the application of the Jacobi collocation method to a class of fractional-order pantograph delay differential equations. We first convert the problem to a nonlinear Volterra integral equation with a weakly singular kernel. Under reasonable assumptions of nonlinearity, the existence and uniqueness of the obtained integral equation are derived. Then, we apply a numerical scheme based on the Jacobi collocation approximation to solve the equivalent integral equation. Furthermore, an error analysis for the numerical scheme is performed. Finally, numerical examples are presented to validate our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agrawal OP (2004) A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn 38(1–4):323–337

    Article  MathSciNet  Google Scholar 

  2. Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods: fundamentals in single domains. Springer, Berlin

    Book  Google Scholar 

  3. Chen Y, Li X, Tang T (2013) A note on Jacobi spectral-collocation methods for weakly singular Volterra integral equations with smooth solutions. J Comput Math 31(1):47–56

    Article  MathSciNet  Google Scholar 

  4. Chen Y, Tang T (2010) Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math Comput 79(269):147–167

    Article  MathSciNet  Google Scholar 

  5. Engheta N (1996) On fractional calculus and fractional multipoles in electromagnetism. IEEE Trans Antennas Propag 44(4):554–566

    Article  MathSciNet  Google Scholar 

  6. Ezz-Eldien SS, Doha EH (2019) Fast and precise spectral method for solving pantograph type Volterra integro-differential equations. Numer Algorithms 81(1):57–77

    Article  MathSciNet  Google Scholar 

  7. Hafshejani MS, Vanani SK, Hafshejani JS (2011) Numerical solution of delay differential equations using Legendre wavelet method. World Appl Sci J 13:27–33

    Google Scholar 

  8. Henry D (2006) Geometric theory of semilinear parabolic equations, vol 840. Springer, Berlin

    Google Scholar 

  9. Kufner A, Persson LE, Samko N (2017) Weighted inequalities of hardy type. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  10. Kulish V, Lage JL (2002) Application of fractional calculus to fluid mechanics. J Fluids Eng 124(3):803–806

    Article  Google Scholar 

  11. Lakshmikantham V, Vatsala A (2008) Basic theory of fractional differential equations. Nonlinear Anal Theory Methods Appl 69(8):2677–2682

    Article  MathSciNet  Google Scholar 

  12. Li X, Tang T (2012) Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind. Front Math China 7(1):69–84

    Article  MathSciNet  Google Scholar 

  13. Machado JT, Kiryakova V, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16(3):1140–1153

    Article  MathSciNet  Google Scholar 

  14. Mastroianni G, Occorsio D (2001) Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey. J Comput Appl Math 134(1–2):325–341

    Article  MathSciNet  Google Scholar 

  15. Nevai P (1984) Mean convergence of Lagrange interpolation. iii. Trans Am Math Soc 282(2):669–698

    Article  MathSciNet  Google Scholar 

  16. Oldham KB (2010) Fractional differential equations in electrochemistry. Adv Eng Softw 41(1):9–12

    Article  Google Scholar 

  17. Oustaloup A (1981) Fractional order sinusoidal oscillators: optimization and their use in highly linear FM modulation. IEEE Trans Circ Syst 28(10):1007–1009

    Article  Google Scholar 

  18. Panupong V, Thieu NV, Razzaghi M (2020) A numerical method for fractional pantograph differential equations based on Taylor wavelets. Trans Inst Meas Control 42(7):1334–1344

    Article  Google Scholar 

  19. Podlubny I (1998) Fractional differential equations, vol 198. Academic Press, San Diego

    MATH  Google Scholar 

  20. Rabiei K, Ordokhani Y (2019) Solving fractional pantograph delay differential equations via fractional-order Boubaker polynomials. Eng Comput 35(4):1431–1441

    Article  Google Scholar 

  21. Rahimkhani P, Ordokhani Y, Babolian E (2016) An efficient approximate method for solving delay fractional optimal control problems. Nonlinear Dyn 86(3):1–13

    Article  MathSciNet  Google Scholar 

  22. Rahimkhani P, Ordokhani Y, Babolian E (2017) A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer Algorithms 74(1):223–245

    Article  MathSciNet  Google Scholar 

  23. Sabermahani S, Ordokhani Y, Yousefi SA (2019) Fibonacci wavelets and their applications for solving two classes of time-varying delay problems. Optimal Control Appl Methods 41(2):395–416

    Article  MathSciNet  Google Scholar 

  24. Sabermahani S, Ordokhani Y, Yousefi SA (2019) Fractional-order Lagrange polynomials: an application for solving delay fractional optimal control problems. Trans Inst Meas Control 41(11):2997–3009

    Article  Google Scholar 

  25. Sabermahani S, Ordokhani Y, Yousefi SA (2020) Fractional-order Fibonacci-hybrid functions approach for solving fractional delay differential equations. Eng Comput 36(2):795–806

    Article  Google Scholar 

  26. Sabermahani S, Ordokhani Y, Yousefi SA (2020) Fractional-order general Lagrange scaling functions and their applications. BIT Numer Math 60(1):101–128

    Article  MathSciNet  Google Scholar 

  27. Saeed U, Rehman MU, Iqbal MA (2015) Modified Chebyshev wavelet methods for fractional delay-type equations. Appl Math Comput 264(1):431–442

    MathSciNet  MATH  Google Scholar 

  28. Sun H, Zhang Y, Baleanu D, Chen W, Chen Y (2018) A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simul 64:213–231

    Article  Google Scholar 

  29. Tang X, Shi Y, Xu H (2018) Well conditioned pseudospectral schemes with tunable basis for fractional delay differential equations. J Sci Comput 74(2):920–936

    Article  MathSciNet  Google Scholar 

  30. Trif D (2012) Direct operatorial tau method for pantograph-type equations. Appl Math Comput 219(4):2194–2203

    MathSciNet  MATH  Google Scholar 

  31. Wang C, Wang Z, Wang L (2018) A spectral collocation method for nonlinear fractional boundary value problems with a Caputo derivative. J Sci Comput 76(1):166–188

    Article  MathSciNet  Google Scholar 

  32. Yang C (2018) Modified Chebyshev collocation method for pantograph-type differential equations. Appl Numer Math 134(14):132–144

    Article  MathSciNet  Google Scholar 

  33. Yang C, Lv X (2020) Generalized Jacobi spectral Galerkin method for fractional pantograph differential equation. Math Methods Appl Sci. https://doi.org/10.1002/mma.6718

    Article  MATH  Google Scholar 

  34. Yang Y, Tohidi E (2019) Numerical solution of multi-pantograph delay boundary value problems via an efficient approach with the convergence analysis. Comput Appl Math 38(3):1–14

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by Nature Science Foundation of Jiangsu (BK20181483). The authors would like to thank the editor and the reviewers for their constructive comments and suggestions for the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Yang .

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang , C., Hou, J. & Lv, X. Jacobi spectral collocation method for solving fractional pantograph delay differential equations. Engineering with Computers 38, 1985–1994 (2022). https://doi.org/10.1007/s00366-020-01193-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01193-7

Keywords

Mathematics Subject Classification

Navigation