Skip to main content
Log in

Facile Mechanochemical Preparation of Polyamide-derivatives via Solid-state Benzoxazine-isocyanide Chemistry

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

With the exploration of novel sustainable protocol for functional polyamides’ (PAs) construction as the starting point, herein, the small molecular model compound (M1-ssBIC) was prepared firstly by manual grinding of monofunctional benzoxazine (1a) and isocyanide (1b) via solid-state benzoxazine-isocyanide chemistry (ssBIC) to evaluate the feasibility of ssBIC. Linear PAs (P1-series polymers) were subsequently synthesized from biunctional benzoxazine (2a) and isocyanide (2b), and the influence of the loading of catalyst (octylphosphonic acid) (OPA) on the polymerization was investigated. Afterwards, two kinds of cross-linked PAs were successfully constructed via ssBIC by using trifunctional benzoxazine (3a) and cross-linked polybenzoxazine (4a) as reaction substrates, respectively, thus verifying the adaptability of ssBIC. Structural characterization indicates that amide, phenolic hydroxyl and tertiary amine substructures, with metal-complexing capability, have been successfully integrated into the obtained PAs. A type of representative PA/silver composite (P3-AgNPs) was prepared subsequently via in situ reduction treatment, and its application as recyclable reduction catalyst for organic pollutant p-nitrophenol (4-NP) was preliminarily investigated here to provide the example for possible downstream application of ssBIC. We think that this current work could provide a new pathway for the construction of functional PAs through facile and sustainable ssBIC protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, G. W. Mechanochemical organic synthesis. Chem. Soe. Rev. 2013, 42, 7668–7700.

    CAS  Google Scholar 

  2. Braga, D.; Maini, L.; Grepioni, F. Mechanochemical preparation of co-crystals. Chem. Soe. Rev. 2013, 42, 7638–7648.

    CAS  Google Scholar 

  3. James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soe. Rev. 2012, 41, 413–447.

    CAS  Google Scholar 

  4. Friscic, T.; Jones, W. Recent advances in understanding the mechanism of cocrystal formation via grinding. Cryst. Growth Des. 2009, 9, 1621–1637.

    CAS  Google Scholar 

  5. Gratz, S.; Beyer, D.; Tkachova, V.; Hellmann, S.; Berger, R.; Feng, X. L.; Borchardt, L. The mechanochemical scholl reaction—a solvent-free and versatile graphitization tool. Chem. Commun. 2018, 54, 5307–5310.

    Google Scholar 

  6. Fulmer, D. A.; Shearouse, W. C.; Medonza, S. T.; Mack, J. Solventfree sonogashira coupling reaction via high speed ball milling. Green Chem. 2009, 11, 1821–1825.

    CAS  Google Scholar 

  7. Hestericova, M.; Sebesta, R. Higher enantioselectivities in thiourea-catalyzed Michael additions under solvent-free conditions. Tetrahedron 2014, 70, 901–905.

    CAS  Google Scholar 

  8. Cook, T. L.; Walker, J. A.; Mack, J. Scratching the catalytic surface of mechanochemistry: a multi-component cuaac reaction using a copper reaction vial. Green Chem. 2013, 15, 617–619.

    CAS  Google Scholar 

  9. Dokli, I.; Gredicak, M. Mechanochemical ritter reaction: a rapid approach to functionalized amides at room temperature. Eur. J. Org. Chem. 2015, 2727–2732.

    Google Scholar 

  10. Kean, Z. S.; Craig, S. L. Mechanochemical remodeling of synthetic polymers. Polymer 2012, 53, 1035–1048.

    CAS  Google Scholar 

  11. Li, J.; Nagamani, C.; Moore, J. S. Polymer mechanochemistry: from destructive to productive. Acc. Chem. Res. 2015, 48, 2181–2190.

    CAS  PubMed  Google Scholar 

  12. Chen, Z.; Mercer, J. A. M.; Zhu, X.; Romaniuk, J. A. H.; Pfattner, R.; Cegelski, L.; Martinez, T. J.; Burns, N. Z.; Xia, Y. Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene. Science 2017, 357, 475.

    CAS  PubMed  Google Scholar 

  13. Gratz, S.; Wolfrum, B.; Borchardt, L. Mechanochemical Suzuki polycondensation—from linear to hyperbranched polyphe-nylenes. Green Chem. 2017, 19, 2973–2979.

    Google Scholar 

  14. Gratz, S.; Borchardt, L. Mechanochemical polymerization—controlling a polycondensation reaction between a diamine and a dialdehyde in a ball mill. RSC Adv. 2016, 6, 64799–64802.

    Google Scholar 

  15. Troschke, E.; Gratz, S.; Lubken, T.; Borchardt, L. Mechanochemical friedel-crafts alkylation—a sustainable pathway towards porous organic polymers. Angew. Chem. Int. Ed. 2017, 56, 6859–6863.

    CAS  Google Scholar 

  16. Gratz, S.; Oltermann, M.; Troschke, E.; Paasch, S.; Krause, S.; Brunner, E.; Borchardt, L. Solvent-free synthesis of a porous thiophene polymer by mechanochemical oxidative polymerization. J. Mater. Chem. A 2018, 6, 21901–21905.

    Google Scholar 

  17. Zhu, X.; Tian, C. C.; Jin, T.; Browning, K. L.; Sacci, R. L.; Veith, G. M.; Dai, S. Solid-state synthesis of conjugated nanoporous polycarbazoles. ACS Macro Lett. 2017, 6, 1056–1059.

    CAS  Google Scholar 

  18. Ohn, N.; Kim, J. G. Mechanochemical post-polymerization modification: solvent-free solid-state synthesis of functional polymers. ACS Macro Lett. 2018, 7, 561–565.

    CAS  Google Scholar 

  19. Ravnsbaek, J. B.; Swager, T. M. Mechanochemical synthesis of poly(phenylene vinylenes). ACS Macro Lett. 2014, 3, 305–309.

    CAS  Google Scholar 

  20. Akther, N.; Phuntsho, S.; Chen, Y.; Ghaffour, N.; Shon, H. K. Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. J. Membr. Sci. 2019, 584, 20–45.

    CAS  Google Scholar 

  21. Sum, J. Y.; Ahmad, A. L.; Ooi, B. S. Selective separation of heavy metal ions using amine-rich polyamide TFC membrane. J. Ind. Eng. Chem. 2019, 76, 277–287.

    CAS  Google Scholar 

  22. Yu, D. Y.; Wang, Y. J.; Wu, M. H.; Zhang, L.; Wang, L. L.; Ni, H. G. Surface functionalization of cellulose with hyperbranched polyamide for efficient adsorption of organic dyes and heavy metals. J. Clean Prod. 2019, 232, 774–783.

    CAS  Google Scholar 

  23. Rajput, L.; Banerjee, R. Mechanochemical synthesis of amide functionalized porous organic polymers. Cryst. Growth Des. 2014, 14, 2729–2732.

    CAS  Google Scholar 

  24. Yang, Y.; Bu, F. X.; Liu, J. J.; Shakir, I.; Xu, Y. X. Mechanochemical synthesis of two-dimensional aromatic polyamides. Chem. Commun. 2017, 53, 7481–7484.

    CAS  Google Scholar 

  25. Li, G. L.; Ye, J. R.; Fang, Q. L.; Liu, F. Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead(II). Chem. Eng. J. 2019, 370, 822–830.

    CAS  Google Scholar 

  26. Polindara-Garcia, L. A.; Juaristi, E. Synthesis of Ugi 4-CR and Passerini 3-CR adducts under mechanochemical activation. Eur. J. Org. Chem. 2016, 1095–1102.

    Google Scholar 

  27. Shi, W.; Liu, Q.; Zhang, J.; Zhou, X. Y.; Yang, C.; Zhang, K. S.; Xie, Z. F. Tetraphenylethene-decorated functional polybenzoxazines: post-polymerization synthesis via benzoxazine-isocyanide chemistry and application in probing and catalyst fields. Polym. Chem. 2019, 10, 1130–1139.

    CAS  Google Scholar 

  28. Zhang, J.; Shi, W.; Liu, Q.; Chen, T. L.; Zhou, X. Y.; Yang, C.; Zhang, K. S.; Xie, Z. F. Atom-economical, room-temperature, and high-efficiency synthesis of polyamides via a three-component polymerization involving benzoxazines, odorless isocyanides, and water. Polym. Chem. 2018, 9, 5566–5571.

    CAS  Google Scholar 

  29. Yang, C.; Shi, W.; Chen, X.; Zhang, K.; Zhou, X.; Sun, X.; Ding, S.; Liu, S.; Xie, Z. Novel triphenylamine-based polyamides: efficient preparation via benzoxazine-isocyanide-chemistry at room temperature and electrochromic properties investigation. Dyes Pigments 2020, 176, 108206.

    CAS  Google Scholar 

  30. Rajkumar, C.; Veerakumar, P.; Chen, S. M.; Thirumalraj, B.; Lin, K. C. Ultrathin sulfur-doped graphitic carbon nitride nanosheets as metal-free catalyst for electrochemical sensing and catalytic removal of 4-nitrophenol. ACS Sustain. Chem. Eng. 2018, 6, 16021–16031.

    CAS  Google Scholar 

  31. Wang, M. W.; Jeng, R. J.; Lin, C. H. Study on the ring-opening polymerization of benzoxazine through multisubstituted polybenzoxazine precursors. Macromolecules 2015, 48, 530–535.

    CAS  Google Scholar 

  32. Zhang, X. C.; Shi, W.; Chen, X.; Xie, Z. F. Isocyano-functionalized, 1,8-naphthalimide-based chromophore as efficient ratiometric fluorescence probe for Hg2+ in aqueous medium. Sens. Actuator B-Chem. 2018, 255, 3074–3084.

    CAS  Google Scholar 

  33. Zhang, K.; Shi, W.; Yang, C.; Zhou, X. Diphenylmethane-based cross-linked polyisocyanide: synthesis and application as nitrite electrochemical probe and N-doped carbon precursor. J. Mater. Sci. 2020, 55, 5021–5037.

    CAS  Google Scholar 

  34. Wang, P.; Xia, L.; Jian, R. K.; Ai, Y. F.; Zheng, X. L.; Chen, G. L.; Wang, J. S. Flame-retarding epoxy resin with an efficient P/N/S-containing flame retardant: preparation, thermal stability, and flame retardance. Polym. Degrad. Stab. 2018, 149, 69–77.

    CAS  Google Scholar 

  35. Zhang, W. C.; Li, X. M.; Yang, R. J. Study on flame retardancy of tgddm epoxy resins loaded with DOPO-POSS compound and OPS/DOPO mixture. Polym. Degrad. Stab. 2014, 99, 118–126.

    CAS  Google Scholar 

  36. Doidge, E. D.; Carson, I.; Tasker, P. A.; Ellis, R. J.; Morrison, C. A.; Love, J. B. A simple primary amide for the selective recovery of gold from secondary resources. Angew. Chem. Int. Ed. 2016, 55, 12436–12439.

    CAS  Google Scholar 

  37. Sangili, A.; Annalakshmi, M.; Chen, S. M.; Balasubramanian, P.; Sundrarajan, M. Synthesis of silver nanoparticles decorated on core-shell structured tannic acid-coated iron oxide nanospheres for excellent electrochemical detection and efficient catalytic reduction of hazardous 4-nitrophenol. Compos. B Eng. 2019, 162, 33–42.

    CAS  Google Scholar 

  38. Zhang, K.; Shang, Z. K.; Wang, J. Y.; Wu, S. P.; Zhu, M. Y.; Li, S. J. Smart synthesis of silver nanoparticles supported in porous polybenzoxazine nanocomposites via a main-chain type benzoxazine resin. Chin. Chem. Lett. 2018, 29, 1367–1371.

    CAS  Google Scholar 

  39. Wang, R. L.; Li, D. P.; Wang, L. J.; Zhang, X.; Zhou, Z. Y.; Mu, J. L.; Su, Z. M. The preparation of new covalent organic framework embedded with silver nanoparticles and its applications in degradation of organic pollutants from waste water. Dalton Trans. 2019, 48, 1051–1059.

    CAS  PubMed  Google Scholar 

  40. Zhan, F. K.; Wang, R.; Yin, J. J.; Han, Z. S.; Zhang, L.; Jiao, T. F.; Zhou, J. X.; Zhang, L. X.; Peng, Q. M. Facile solvothermal preparation of Fe3O4-Ag nanocomposite with excellent catalytic performance. RSC Adv. 2019, 9, 878–883.

    CAS  Google Scholar 

  41. Xue, Z. H.; Zhang, F.; Qin, D. D.; Wang, Y. L.; Zhang, J. X.; Liu, J.; Feng, Y. J.; Lu, X. Q. One-pot synthesis of silver nanoparticle catalysts supported on N-doped ordered mesoporous carbon and application in the detection of nitrobenzene. Carbon 2014, 69, 481–489.

    CAS  Google Scholar 

  42. Vinoth, R.; Babu, S. G.; Bahnemann, D.; Neppolian, B. Nitrogen doped reduced graphene oxide hybrid metal free catalyst for effective reduction of 4-nitrophenol. Sci. Adv. Mater. 2015, 7, 1443–1449.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21774103) and the Youth Science and Technology Innovation Team of SWPU (Nos. 2017CXTD05 and 2018CXTD05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shi.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Shi, W., Zhou, XY. et al. Facile Mechanochemical Preparation of Polyamide-derivatives via Solid-state Benzoxazine-isocyanide Chemistry. Chin J Polym Sci 39, 573–584 (2021). https://doi.org/10.1007/s10118-021-2510-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2510-6

Keywords

Navigation