Skip to main content
Log in

Structural Changes and Electrodynamic Effects in Polymers under Fast Uniaxial Compression

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Rheological explosion in polymers under uniaxial compression in an open volume occurs at the end of continuous rapid plastic deformation after several stages of creep. Two types of polymers were chosen for this study: brittle glassy amorphous polystyrene and thermoplastic semi-crystalline polypropylene. Electric pulses were detected during explosion, and their spectra were analyzed with two models. X-ray diffraction methods were used to investigate changes in the structure and morphology of polymers during deformation and rheological explosion. The pores appear in polymer in this process, and their shape and size distribution were derived from X-ray experiments. The main reason for the formation of pores in polymer samples in rheological explosion experiments is the intense microshifts in the polymer volume under the action of high applied pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bridgman, P. W. Effects of high shearing stress combined with high hydrostatic pressure. Phys. Rev. 1935, 48, 825–847.

    Article  CAS  Google Scholar 

  2. Bridgman, P. W. Flow in heavily stressed metals. J. Appl. Phys. 1937, 8, 328–336.

    Article  Google Scholar 

  3. Meade, C.; Jeanloz, R. Acoustic emissions and shear instabilities during phase transformations in Si and Ge at ultrahigh pressures. Nature 1989, 339, 616–618.

    Article  CAS  Google Scholar 

  4. Holzhausen, G. R.; Johnson, A. M. The concept of residual stress in rock. Tectonophysics 1979, 58, 237–267.

    Article  Google Scholar 

  5. Sleep, N. H.; Blanpied, M. L. Creep, compaction and the weak rheology of major faults. Nature 1992, 359, 687–692.

    Article  Google Scholar 

  6. Kanel, G. I.; Fortov, V. E.; Razorenov, S. V. Shock waves in condensed-state physics. Phys.-Usp. 2007, 50, 771–792.

    Article  CAS  Google Scholar 

  7. Aleksandrov, A. I.; Alexandrov, I. A.; Prokof’ev, A. I.; Bubnov, N. N. Pulse mechanochemistry of organoelement compounds. Russ. Chem. Bull. 1999, 48, 1599–1614.

    Article  CAS  Google Scholar 

  8. Aleksandrov, I. A.; Gritsenko, O. T.; Getmanova, E. V.; Obolonkova, E. S.; Serenko, O. A.; Shevchenko, V. G.; Aleksandrov, A. I. Muzafarov, A. M. Behavior of polystyrene-based nano- and microcomposites under fast compression. Tech. Phys. 2011, 56, 491–495.

    Article  CAS  Google Scholar 

  9. Aleksandrov, I. A.; Gritsenko, O. T.; Perov, N. S.; Getmanova, E. V.; Obolonkova, E. S.; Serenko, O. A.; Shevchenko, V. G.; Aleksandrov, A. I.; Muzafarov, A. M. Fracture of polystyrene- and molecular silica sol-based nanocomposites during fast compression. Tech. Phys. 2013, 58, 88–93.

    Article  CAS  Google Scholar 

  10. Aleksandrov, A. I.; Alexandrov, I. A.; Prokof’ev, A. I. addio-frequency superradiance at the rheological explosion of a paramagnetic polymer composite containing manganese complexes. JETP Lett. 2013, 97, 546–548.

    Article  CAS  Google Scholar 

  11. Aleksandrov, A. I.; Aleksandrov, I. A.; Zezin, S. B.; Degtyarev, E. N.; Dubinskiy, A. A.; Abramchuk, S. S.; Prokof’ev, A. I. Radio-frequency superradiance induced by the rheological explosion of polymer composites containing paramagnetic cobalt complexes. Russ. J. Phys. Chem. B 2016, 10, 69–76.

    Article  CAS  Google Scholar 

  12. Aleksandrov, A. I.; Shevchenko, V. G.; Aleksandrov, I. A. Generation of superradiance by pulsed mechanical action. Tech. Phys. Lett. 2020, 46, 346–349.

    Article  CAS  Google Scholar 

  13. Aleksandrov, A. I.; Aleksandrov, I. A.; Shevchenko, V. G. Multiferroic based on metal-organic dimers with the Dzyaloshinskii-Moriya effect. JETP Lett. 2016, 104, 568–572.

    Article  CAS  Google Scholar 

  14. Aleksandrov, A. I.; Shevchenko, V. G.; Aleksandrov, I. A. A polymer composite based on organometallic cobalt dimers with Dzyaloshinskii-Moriya effect. Polym. Sci. Ser. A 2018, 60, 74–80.

    Article  CAS  Google Scholar 

  15. Nielsen, L. E.; Landel, R. F. Mechanical properties of polymers and composites, 2nd ed. Marcel Dekker, Inc., NY, 1994, p. 112.

    Google Scholar 

  16. Petoukhov, M. V.; Franke, D.; Shkumatov, A. V.; Tria, G.; Kikhney, A. G.; Gajda, M.; Gorba, C.; Mertens, H. D. T., Konarev, P. V.; Svergun, D. I. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Cryst. 2012, 45, 342–350.

    Article  CAS  Google Scholar 

  17. Tikhonov, A. E.; Arsenin, V. Y. Solutions of ill-posed problems. John Wiley & Sons, New York, 1977, pp. 258.

    Google Scholar 

  18. Wertz, J. E. Bolton, J. R. Electron spin resonance. Chapman and Hall, New York, 1986, pp. 500.

    Book  Google Scholar 

  19. Lorentz, H. A. Theorien physikalischer Erscheinungen. Physikalische Zeitschrift. 1899, 498, 514–591.

    Google Scholar 

  20. Kremer F. Broadband dielectric spectroscopy, Springer-Verlag, Berlin Heidelberg. 2003, pp. 60–98.

    Book  Google Scholar 

  21. Volynskii, A. L.; Bakeev, N. F. Structural self-organization of amorphous polymers (in Russian). Fizmatlit, Moscow, 2005.

    Google Scholar 

  22. Bendler, J. T. Conformational origin of glassy-state relaxation and ductility in aromatic polycarbonates. Comput. Theor. Polym. Sci. 1998, 8, 83–92.

    Article  CAS  Google Scholar 

  23. Othmezouri-Decerf J. Investigation of the low temperature ageing kinetics of glassy polycarbonate by mechanical damping spectroscopy. J. Mater. Sci. 1999, 34, 2351–2359.

    Article  CAS  Google Scholar 

  24. Feigin, L. A.; Svergun, D. I. Structure analysis by small-angle X-ray and neutron scattering. New York: Plenum Press, 1987, pp. 335.

    Book  Google Scholar 

  25. Ozerin, A. N.; Kurkin, T. S.; Ozerina, L. A.; Dolmatov, V. Y. X-ray diffraction study of the structure of detonation nanodiamonds. Crystallogr. Rep. 2008, 53, 60–67.

    Article  CAS  Google Scholar 

  26. Shtykova, E. V. Shape determination of polydisperse and polymorphic nanoobjects from small-angle X-ray scattering data (computer simulation). Nanotechnologies in Russia, 2015, 10, 4081–419.

    Article  Google Scholar 

  27. De Rosa, C.; Auriemma, F. Diffraction analysis of ordered and disordered crystals. New Jersey: John Wiley & Sons, Inc., 2014, pp. 480.

    Google Scholar 

  28. Buchachenko, A. L. Microwave stimulation of dislocations and the magnetic control of the earthquake core. Phys.-Usp. 2019, 62, 46–53.

    Article  CAS  Google Scholar 

  29. Morgunov, R. B. Spin micromechanics in the physics of plasticity. Phys.-Usp. 2004, 47, 125–148.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaliy G. Shevchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.I., Aleksandrov, I.A., Shevchenko, V.G. et al. Structural Changes and Electrodynamic Effects in Polymers under Fast Uniaxial Compression. Chin J Polym Sci 39, 601–609 (2021). https://doi.org/10.1007/s10118-021-2511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2511-5

Keywords

Navigation