Skip to main content
Log in

Reaction Stages of Feather Hydrolysis: Factors That Influence Availability for Enzymatic Hydrolysis and Cystine Conservation during Thermal Pressure Hydrolysis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The vast amount of feathers generated (>1 Mtons/a in Europe) in the poultry industry is an opportunity of upcycling by-product materials and improving sustainable practices. Feathers are potentially interesting materials as feed protein ingredients due to their high protein (>85 wt%) and cystine content (>7 wt%). However, due to their challenging recalcitrant nature, they have to be processed to make feather protein suitably digestible. The objective was to investigate the effects of temperature (120oC–160oC) and time (10, 30, and 60 min) in thermal pressure hydrolysis of feathers on availability for enzymatic hydrolysis (AEH) and cystine conservation. AEH is defined as degree of degradation of processed feather protein by two digestive enzymes pepsin and pancreatin (Boisen). The present study identified and assessed four temperature stages that take place during feather processing. The four temperature stages are 120oC–135oC, 140oC–155oC, > 160oC, and the cooling-down phase. The second stage has the greatest influence on AEH. As well as temperature, hydrolysis time is also an essential parameter that had a major impact in the second stage (140oC–155oC). Both temperature and time influence negatively cystine content and stability. The present study demonstrates for the first time the importance of four reaction stages during feather hydrolysis and the impact of four stages on AEH of the obtained products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AEH:

availability for enzymatic hydrolysis

TPH:

thermal pressure hydrolysis; wt% CP, wt% of crude protein

DSC:

Differential Scanning Calorimetry; µmol / 100 g CP, µmol / 100 g crude protein

References

  1. Marquer, P., T. Rabade, and R. Forti (2015) Meat production statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Meat_production_statistics.

  2. Food and Agriculture Organization of the United Nations (2017) Food outlook biannual report on global food markets. http://www.fao.org/giews/.

  3. Onifade, A. A., N. A. Al-Sane, A. A. Al-Musallam, and S. Al-Zarban (1998) A review: Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour. Technol. 66: 1–11.

    Article  CAS  Google Scholar 

  4. Bureau, D. P. (2013) The nutritive value of processed animal proteins to different aquaculture species. Proceedings of EFPRA Congress 2013. June 12–15. Prague, Czech.

    Google Scholar 

  5. Meeker, D. L. and C. R. Hamilton (2006) An overview of the rendering industry. pp. 1–16. In: D. L. Meeker (ed.). Essential Rendering- All About the Animal By-products Industry. National Renderers Association, Alexandria, VA, USA.

    Google Scholar 

  6. Sevier, C. S. and C. A. Kaiser (2002) Formation and transfer of disulphide bonds in living cells. Nat. Rev. Mol. Cell Biol. 3: 836–847.

    Article  CAS  PubMed  Google Scholar 

  7. Yin, J., W. Ren, G. Yang, J. Duan, X. Huang, R. Fang, C. Li, T. Li, Y. Yin, Y. Hou, S. W. Kim, and G. Wu (2016) L-Cysteine metabolism and its nutritional implications. Mol. Nutr. Food Res. 60: 134–146.

    Article  CAS  PubMed  Google Scholar 

  8. Miller, E. L. (2002) Protein nutrition requirements of farmed livestock and dietary supply. Proceedings of FAO Expert Consultation and Workshop on Protein Sources for the Animal Feed Industry. April 29–May 3. Bangkok, Thailand.

    Google Scholar 

  9. Klemesrud, M. and T. J. Klopfenstein (1997) Cysteine from feather meal and sulfur amino acid requirements for growing steers. Neb. Beef Cattle Rep. 411: 14–15.

    Google Scholar 

  10. Woodgate, S. L. (2006) What would a world without rendering look like? pp. 277–294. In: D. L. Meeker (ed.). Essential Rendering- All About the Animal By-products Industry. National Renderers Association, Alexandria, VA, USA.

    Google Scholar 

  11. Wang, B., W. Yang, J. McKittrick, and M. A. Meyers (2016) Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 76: 229–318.

    Article  CAS  Google Scholar 

  12. Fraser, R. D. B., T. P. Macrae, D. A. D. Parry, and E. Suzuki (1969) The structure of β-keratin. Polymer. 10: 810–826.

    Article  CAS  Google Scholar 

  13. Fraser, R. D. B. and D. A. D. Parry (2014) Amino acid sequence homologies in the hard keratins of birds and reptiles, and their implications for molecular structure and physical properties. J. Struct. Biol. 188: 213–224.

    Article  CAS  PubMed  Google Scholar 

  14. Barone, J. R., W. F. Schmidt, and N. T. Gregoire (2005) Extrusion of feather keratin. J. Appl. Polym. Sci. 100: 1432–1442.

    Article  CAS  Google Scholar 

  15. Koenig, N. H. and M. Friedman (1977) Comparison of wool reactions with selected mono- and bifunctional reagents. pp. 355–382. In: M. Friedman (ed.). Protein Crosslinking. Plenum Press, New York, NY, USA.

    Chapter  Google Scholar 

  16. Moran, E. T., J. D. Summers, and S. J. Slinger (1966) Keratin as a source of protein for the growing chick: 1. Amino acid imbalance as the cause for inferior performance of feather meal and the implication of disulfide bonding in raw feathers as the reason for poor digestibility. Poult. Sci. 45: 1257–1266.

    Article  CAS  Google Scholar 

  17. Papadopoulos, M. C. (1984) Feather Meal: Evaluation of the Effect of Processing Conditions by Chemical and Chick Assays. Ph.D. Thesis. Wageningen University & Research, Wageningen, Netherlands.

    Google Scholar 

  18. Papadopoulos, M. C. (1986) The effect of enzymatic treatment on amino acid content and nitrogen characteristics of feather meal. Anim. Feed Sci. Technol. 16: 151–156.

    Article  CAS  Google Scholar 

  19. Latshaw, J. D. (1990) Quality of feather meal as affected by feather processing conditions. Poult. Sci. 69: 953–958.

    Article  Google Scholar 

  20. Coward-Kelly, G., V. S. Chang, F. K. Agbogbo, and M. T. Holtzapple (2006) Lime treatment of keratinous materials for the generation of highly digestible animal feed: 1. Chicken feathers. Bioresour. Technol. 97: 1337–1343.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, J., S. Ding, Y. Ji, J. Ding, X. Yang, M. Zou, and Z. Li (2015) Microwave-enhanced hydrolysis of poultry feather to produce amino acid. Chem. Eng. Process. 87: 104–109.

    Article  CAS  Google Scholar 

  22. Tadtiyanant, C., J. J. Lyons, and J. M. Vandepopulire (1993) Extrusion processing used to convert dead poultry, feathers, eggshells, hatchery waste, and mechanically deboned residue into feedstuffs for poultry. Poult. Sci. 72: 1515–1527.

    Article  Google Scholar 

  23. Papadopoulos, M. C. (1989) Effect of processing on high-protein feedstuffs: A review. Biol Wastes. 29: 123–138.

    Article  Google Scholar 

  24. Friedman, M. (1999) Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. J. Agric. Food Chem. 47: 1295–1319.

    Article  CAS  PubMed  Google Scholar 

  25. Commission regulation (EC) No 152/2009 2014 Determination of the content of crude ash, in No 152/2009. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02009R0152-20170524&from=EN.

  26. Boisen, S. and B. O. Eggum (1991) Critical evaluation of in vitro methods for estimating digestibility in simple-stomach animals. Nutr Res Rev. 4: 141–162.

    Article  CAS  PubMed  Google Scholar 

  27. Boisen, S. and J. A. Fernhndez (1995) Prediction of the apparent ileal digestibility of protein and amino acids in feedstuffs and feed mixtures for pigs by in vitro analyses. Anim. Feed Sci. Technol. 51: 29–43.

    Article  CAS  Google Scholar 

  28. ISO, Animal feeding stuffs — Determination of amino acids content.https://www.iso.org/standard/37258.html.

  29. Milczarek, P., M. Zielinski, and M. L. Garcia (1992) The mechanism and stability of thermal transitions in hair keratin. Colloid Polym. Sci. 270: 1106–1115.

    Article  CAS  Google Scholar 

  30. Takahashi, K., H. Yamamoto, Y. Yokote, and M. Hattori (2004) Thermal behavior of fowl feather keratin. Biosci. Biotechnol. Biochem. 68: 1875–1881.

    Article  CAS  PubMed  Google Scholar 

  31. Brebu, M. and I. Spiridon (2011) Thermal degradation of keratin waste. J. Anal. Appl. Pyrolysis. 91: 288–295.

    Article  CAS  Google Scholar 

  32. Sohn, M. and C. T. Ho (1995) Ammonia generation during thermal degradation of amino acids. J. Agric. Food Chem. 43: 3001–3003.

    Article  CAS  Google Scholar 

  33. Yablokov, V. A., Y. A. Vasina, I. A. Zelyaev, and S. V. Mitrofanova (2009) Kinetics of thermal decomposition of sulfur-containing amino acids. Russ. J. Gen. Chem. 79: 1141.

    Article  CAS  Google Scholar 

  34. Lagrain, B., K. De Vleeschouwer, I. Rombouts, K. Brijs, M. E. Hendrickx, and J. A. Delcour (2010) The kinetics of β-elimination of cystine and the formation of lanthionine in gliadin. J. Agric. Food Chem. 58: 10761–10767.

    Article  CAS  PubMed  Google Scholar 

  35. Papadopoulos, M. C., A. R. El Boushy, A. E. Roodeen, and E. H. Ketelaars (1986) Effects of processing time and moisture content on amino acid composition and nitrogen characteristics of feather meal. Anim. Feed Sci. Technol. 14: 279–290.

    Article  Google Scholar 

  36. Volkin, D. B. and A. M. Klibanov (1987) Thermal destruction processes in proteins involving cystine residues. J. Biol. Chem. 262: 2945–2950.

    Article  CAS  PubMed  Google Scholar 

  37. Papadopoulos, M. C., A. R. el Boushy, and E. H. Ketelaars (1985) Effect of different processing conditions on amino acid digestibility of feather meal determined by chicken assay. Poult. Sci. 64: 1729–1741.

    Article  CAS  Google Scholar 

  38. Moritz, J. S. and J. D. Latshaw (2001) Indicators of nutritional value of hydrolyzed feather meal. Poult. Sci. 80: 79–86.

    Article  CAS  PubMed  Google Scholar 

  39. Asquith, R. S. and M. S. Otterburn (1977) Cystine-alkali reactions in relation to protein crosslinking. pp. 93–121. In: M. Friedman (ed.). Protein Crosslinking. Plenum Press, New York, NY, USA.

    Chapter  Google Scholar 

  40. Singh, R. and G. M. Whitesides (1990) Comparisons of rate constants for thiolate-disulfide interchange in water and in polar aprotic solvents using dynamic proton NMR line shape analysis. J. Am. Chem. Soc. 112: 1190–1197.

    Article  CAS  Google Scholar 

  41. Damodaran, S. (2007) Amino acids, peptides, and proteins. pp. 217–329. In: S. Domodaran, K. L. Parkin, and O. R Fennema (eds.). Fennema’s Food Chemistry. CRC Press, Bosa Roca, FL, USA.

    Google Scholar 

  42. Weder, J. K. P. and H. D. Belitz (2003) Interactions and reactions involved in food processing. pp. 4841–4847. In: B. Caballero, P. Finglas, and F. Toldra (eds.). Encyclopedia of Food Sciences and Nutrition. Academic Press, Cambridge, MA, USA.

    Chapter  Google Scholar 

  43. Han, Y. and C. M. Parsons (1991) Protein and amino acid quality of feather meals. Poult. Sci. 70: 812–822.

    Article  Google Scholar 

  44. Papadopoulos, M. C. (1985) Processed chicken feathers as feedstuff for poultry and swine. A review. Agric Wastes. 14: 275–290.

    Article  CAS  Google Scholar 

  45. Latshaw, J. D., N. Musharaf, and R. Retrum (1994) Processing of feather meal to maximize its nutritional value for poultry. Anim. Feed Sci. Technol. 47: 179–188.

    Article  Google Scholar 

  46. Sullivan, T. W. and E. L. Stephenson (1957) Effect of processing methods on the utilization of hydrolyzed poultry feathers by growing chicks. Poult. Sci. 36: 361–365.

    Article  CAS  Google Scholar 

  47. Papadopoulos, M. C. (1987) In vitro and in vivo estimation of protein quality of laboratory treated feather meal. Biol Wastes. 21: 143–148.

    Article  Google Scholar 

  48. Papadopoulos, M. C., A. R. El-Boushy, and A. E. Roodbeen (1985) The effect of varying autoclaving conditions and added sodium hydroxide on amino acid content and nitrogen characteristics of feather meal. J. Sci. Food. Agric. 36: 1219–1226.

    Article  Google Scholar 

  49. Wang, Z., T. Rejtar, Z. S. Zhou, and B. L. Karger (2010) Desulfurization of cysteine-containing peptides resulting from sample preparation for protein characterization by mass spectrometry. Rapid Commun. Mass Spectrom. 24: 267–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Perna, A. F., M. Zacchia, F. Trepiccione, and D. Ingrosso (2017) The sulfur metabolite lanthionine: evidence for a role as a novel uremic toxin. Toxins. 9: 26.

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Saria International GmbH.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes H. Bitter.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material (ESM)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goerner-Hu, X., Scott, E.L., Seeger, T. et al. Reaction Stages of Feather Hydrolysis: Factors That Influence Availability for Enzymatic Hydrolysis and Cystine Conservation during Thermal Pressure Hydrolysis. Biotechnol Bioproc E 25, 749–757 (2020). https://doi.org/10.1007/s12257-019-0351-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0351-8

Keywords

Navigation