Skip to main content
Log in

CHO Cell Line Development and Engineering via Site-specific Integration: Challenges and Opportunities

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Chinese hamster ovary (CHO) cells are utilized as primary mammalian expression host cells for the production of biopharmaceuticals. Recombinant CHO cell line development (CLD) has been a crucial step for therapeutic protein production platforms; however, this step remains time-consuming and costly. With the emergence of multiomics data sets of CHO cells and genome editing technology such as CRISPR/Cas9, site-specific integration-based cell line development, and engineering have been successfully implemented in CHO cells for predictable transgene expression and expediting the process of CLD. This review describes the trends in CHO CLD from random to targeted approaches. And we cover the major obstacles faced in rational CHO CLD and the potential strategies employed to overcome its limitations. Finally, we conclude by discussing future directions and challenges for next-generation CHO cell factories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim, J. Y., Y. G. Kim, and G. M. Lee (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl. Microbiol. Biotechnol. 93: 917–930.

    Article  CAS  PubMed  Google Scholar 

  2. Noh, S. M., M. Sathyamurthy, and G M. Lee (2013) Development of recombinant Chinese hamster ovary cell lines for therapeutic protein production. Curr. Opin. Chem. Eng. 2: 391–397.

    Article  Google Scholar 

  3. Kou, T. C., L. Fan, Y. Zhou, Z. Y. Ye, L. Zhao, and W. S. Tan (2011) Increasing the productivity of TNFR-Fc in GS-CHO cells at reduced culture temperatures. Biotechnol. Bioprocess Eng. 16: 136–143.

    Article  CAS  Google Scholar 

  4. Kim, J. S., M. K. Min, and E. C. Jo (2001) High-level expression and characterization of single chain urokinase-type plasminogen activator (scu-PA) produced in recombinant Chinese hamster ovary (CHO) cells. Biotechnol. Bioprocess Eng. 6: 117–127.

    Article  CAS  Google Scholar 

  5. Kim, T. K., J. Y. Chung, Y. H. Sung, and G. M. Lee (2001) Relationship between cell size and specific thrombopoietin productivity in Chinese hamster ovary cells during dihydrofolate reductase-mediated gene amplification. Biotechnol. Bioprocess Eng. 6: 332–336.

    Article  CAS  Google Scholar 

  6. Du, Z., M. Mujacic, K. Le, G. Caspary, H. Nunn, C. Heath, and P. Reddy (2013) Analysis of heterogeneity and instability of stable mAb-expressing CHO cells. Biotechnol. Bioprocess Eng. 18: 419–429.

    Article  CAS  Google Scholar 

  7. Lee, J. C., D. Y. Kim, D. J. Oh, and H. N. Chang (2008) Long-term operation of depth filter perfusion systems (DFPS) for monoclonal antibody production using recombinant CHO cells: Effect of temperature, pH, and dissolved oxygen. Biotechnol. Bioprocess Eng. 13: 401–409.

    Article  CAS  Google Scholar 

  8. Chen, F., T. Kou, L. Fan, Y. Zhou, Z. Ye, L. Zhao, and W. S. Tan (2011) The combined effect of sodium butyrate and low culture temperature on the production, sialylation, and biological activity of an antibody produced in CHO cells. Biotechnol. Bioprocess Eng. 16: 1157–1165.

    Article  CAS  Google Scholar 

  9. Kelley, B. (2009) Industrialization of mAb production technology: The bioprocessing industry at a crossroads. MAbs. 1: 443–452.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee, J. S., H. F. Kildegaard, N. E. Lewis, and G. M. Lee (2019) Mitigating clonal variation in recombinant mammalian cell lines. Trends Biotechnol. 37: 931–942.

    Article  CAS  PubMed  Google Scholar 

  11. Priola, J. J., N. Calzadilla, M. Baumann, N. Borth, C. G. Tate, and M. J. Betenbaugh (2016) High-throughput screening and selection of mammalian cells for enhanced protein production. Biotechnol. J. 11: 853–865.

    Article  CAS  PubMed  Google Scholar 

  12. Spiess, C., Q. Zhai, and P. J. Carter (2015) Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol. Immunol. 67: 95–106.

    Article  CAS  PubMed  Google Scholar 

  13. Mathias, S., S. Fischer, R. Handrick, J. Fieder, P. Schulz, H. Bradl, I. Gorr, M. Gamer, and K. Otte (2018) Visualisation of intracellular production bottlenecks in suspension-adapted CHO cells producing complex biopharmaceuticals using fluorescence microscopy. J. Biotechnol. 271: 47–55.

    Article  CAS  PubMed  Google Scholar 

  14. Kim, H. and J. S. Kim (2014) A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15: 321–334.

    Article  CAS  PubMed  Google Scholar 

  15. Lewis, N. E., X. Liu, Y. Li, H. Nagarajan, G. Yerganian, E. O’Brien, A. Bordbar, A. M. Roth, J. Rosenbloom, C. Bian, M. Xie, W. Chen, N. Li, D. Baycin-Hizal, H. Latif, J. Forster, M. J. Betenbaugh, I. Famili, X. Xu, J. Wang, and B. O. Palsson (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat. Biotechnol. 31: 759–765.

    Article  CAS  PubMed  Google Scholar 

  16. Xu, X., H. Nagarajan, N. E. Lewis, S. Pan, Z. Cai, X. Liu, W. Chen, M. Xie, W. Wang, S. Hammond, M. R. Andersen, N. Neff, B. Passarelli, W. Koh, H. C. Fan, J. Wang, Y. Gui, K. H. Lee, M. J. Betenbaugh, S. R. Quake, I. Famili, B. O. Palsson, and J. Wang (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 29: 735–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, J. S., L. M. Grav, N. E. Lewis, and H. Faustrup Kildegaard (2015) CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Biotechnol. J. 10: 979–994.

    Article  CAS  PubMed  Google Scholar 

  18. Shin, J., N. Lee, Y. Song, J. Park, T. J. Kang, S. C. Kim, G. M. Lee, and B. K. Cho (2015) Efficient CRISPR/Cas9-mediated multiplex genome editing in CHO cells via high-level sgRNA-Cas9 complex. Biotechnol. Bioprocess Eng. 20: 825–833.

    Article  CAS  Google Scholar 

  19. Lee, J. S., T. B. Kallehauge, L. E. Pedersen, and H. F. Kildegaard (2015) Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci. Rep. 5: 8572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hamaker, N. K. and K. H. Lee (2018) Site-specific integration ushers in a new era of precise CHO cell line engineering. Curr. Opin. Chem. Eng. 22: 152–160.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kito, M., S. Itami, Y. Fukano, K. Yamana, and T. Shibui (2002) Construction of engineered CHO strains for high-level production of recombinant proteins. Appl. Microbiol. Biotechnol. 60: 442–448.

    Article  CAS  PubMed  Google Scholar 

  22. Huang, Y., Y. Li, Y. G. Wang, X. Gu, Y. Wang, and B. F. Shen (2007) An efficient and targeted gene integration system for high-level antibody expression. J. Immunol. Methods. 322: 28–39.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, H., Z. G Liu, Z. W. Sun, Y. Huang, and W. Y. Yu (2010) Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system. J. Biotechnol. 147: 122–129.

    Article  CAS  PubMed  Google Scholar 

  24. Kim, M. S., W. H. Kim, and G. M. Lee (2008) Characterization of site-specific recombination mediated by Cre recombinase during the development of erythropoietin producing CHO cell lines. Biotechnol. Bioprocess Eng. 13: 418.

    Article  CAS  Google Scholar 

  25. Zhang, L., M. C. Inniss, S. Han, M. Moffat, H. Jones, B. Zhang, W. L. Cox, J. R. Rance, and R. J. Young (2015) Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line. Biotechnol. Prog. 31: 1645–1656.

    Article  CAS  PubMed  Google Scholar 

  26. Carver, J., D. Ng, M. Zhou, P. Ko, D. Zhan, M. Yim, D. Shaw, B. Snedecor, M. W. Laird, S. Lang, A. Shen, and Z. Hu (2020) Maximizing antibody production in a targeted integration host by optimization of subunit gene dosage and position. Biotechnol. Prog. 36: e2967.

    Article  CAS  PubMed  Google Scholar 

  27. Thomas, K. R., K. R. Folger, and M. R. Capecchi (1986) High frequency targeting of genes to specific sites in the mammalian genome. Cell. 44: 419–428.

    Article  CAS  PubMed  Google Scholar 

  28. Smithies, O., R. G. Gregg, S. S. Boggs, M. A. Koralewski, and R. S. Kucherlapati (1985) Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature. 317: 230–234.

    Article  CAS  PubMed  Google Scholar 

  29. Vasquez, K. M., K. Marburger, Z. Intody, and J. H. Wilson (2001) Manipulating the mammalian genome by homologous recombination. Proc. Natl. Acad. Sci. USA. 98: 8403–8410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pennington, S. L. and J. H. Wilson (1991) Gene targeting in Chinese hamster ovary cells is conservative. Proc. Natl. Acad. Sci. USA. 88: 9498–9502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adair, G. M., R. S. Nairn, J. H. Wilson, M. M. Seidman, K. A. Brotherman, C. MacKinnon, and J. B. Scheerer (1989) Targeted homologous recombination at the endogenous adenine phosphoribosyltransferase locus in Chinese hamster cells. Proc. Natl. Acad. Sci. USA. 86: 4574–4578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamane-Ohnuki, N., S. Kinoshita, M. Inoue-Urakubo, M. Kusunoki, S. Iida, R. Nakano, M. Wakitani, R. Niwa, M. Sakurada, K. Uchida, K. Shitara, and M. Satoh (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: An ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol. Bioeng. 87: 614–622.

    Article  CAS  PubMed  Google Scholar 

  33. Orlando, S. J. Y. Santiago, R. C. DeKelver, Y. Freyvert, E. A. Boydston, E. A. Moehle, V. M. Choi, S. M. Gopalan, J. F. Lou, J. Li, J. C. Miller, M. C. Holmes, P. D. Gregory, F. D. Urnov, and G. J. Cost (2010) Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. 38: e152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Cristea, S., Y. Freyvert, Y. Santiago, M. C. Holmes, F. D. Urnov, P. D. Gregory, and G. J. Cost (2013) In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol. Bioeng. 110: 871–880.

    Article  CAS  PubMed  Google Scholar 

  35. Bachu, R., I. Bergareche, and L. A. Chasin (2015) CRISPR-Cas targeted plasmid integration into mammalian cells via non-homologous end joining. Biotechnol. Bioeng. 112: 2154–2162.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, M., J. Wang, M. Luo, H. Luo, M. Zhao, L. Han, M. Zhang, H. Yang, Y. Xie, H. Jiang, L. Feng, H. Lu, and J. Zhu (2018) Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35. Appl. Microbiol. Biotechnol. 102: 6105–6117.

    Article  CAS  PubMed  Google Scholar 

  37. Inniss, M. C., K. Bandara, B. Jusiak, T. K. Lu, R. Weiss, L. Wroblewska, and L. Zhang (2017) A novel Bxb1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO cells. Biotechnol. Bioeng. 114: 1837–1846.

    Article  CAS  PubMed  Google Scholar 

  38. Phan, Q. V., J. Contzen, P. Seemann, and M. Gossen (2017) Site-specific chromosomal gene insertion: Flp recombinase versus Cas9 nuclease. Sci. Rep. 7: 17771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gaidukov, L., L. Wroblewska, B. Teague, T. Nelson, X. Zhang, Y. Liu, K. Jagtap, S. Mamo, W. A. Tseng, A. Lowe, J. Das, K. Bandara, S. Baijuraj, N. M. Summers, T. K. Lu, L. Zhang, and R. Weiss (2018) A multi-landing pad DNA integration platform for mammalian cell engineering. Nucleic Acids Res. 46: 4072–4086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grav, L. M., D. Sergeeva, J. S. Lee, I. Marin de Mas, N. E. Lewis, M. R. Andersen, L. K. Nielsen, G. M. Lee, and H. F. Kildegaard (2018) Minimizing clonal variation during mammalian cell line engineering for improved systems biology data generation. ACS Synth. Biol. 7: 2148–2159.

    Article  CAS  PubMed  Google Scholar 

  41. Chi, X., Q. Zheng, R. Jiang, R. Y. Chen-Tsai, and L. J. Kong (2019) A system for site-specific integration of transgenes in mammalian cells. PLoS One. 14: e0219842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dahodwala, H. and K. H. Lee (2019) The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr. Opin. Biotechnol. 60: 128–137.

    Article  CAS  PubMed  Google Scholar 

  43. Bosshard, S., P. O. Duroy, and N. Mermod (2019) A role for alternative end-joining factors in homologous recombination and genome editing in Chinese hamster ovary cells. DNA Repair. 82: 102691.

    Article  CAS  PubMed  Google Scholar 

  44. Ren, C., K. Xu, D. J. Segal, and Z. Zhang (2019) Strategies for the enrichment and selection of genetically modified cells. Trends Biotechnol. 37: 56–71.

    Article  CAS  PubMed  Google Scholar 

  45. Lee, J. S., L. M. Grav, L. E. Pedersen, G. M. Lee, and H. F. Kildegaard (2016) Accelerated homology-directed targeted integration of transgenes in Chinese hamster ovary cells via CRISPR/Cas9 and fluorescent enrichment. Biotechnol. Bioeng. 113: 2518–2523.

    Article  CAS  PubMed  Google Scholar 

  46. Symington, L. S. and J. Gautier (2011) Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45: 247–271.

    Article  CAS  PubMed  Google Scholar 

  47. Maresca, M., V. G. Lin, N. Guo, and Y. Yang (2013) Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. 23: 539–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Auer, T. O., K. Duroure, A. De Cian, J. P. Concordet, and F. Del Bene (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 24: 142–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He, X., C. Tan, F. Wang, Y. Wang, R. Zhou, D. Cui, W. You, H. Zhao, J. Ren, and B. Feng (2016) Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res. 44: e85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Suzuki, K., Y. Tsunekawa, R. Hernandez-Benitez, J. Wu, J. Zhu, E. J. Kim, F. Hatanaka, M. Yamamoto, T. Araoka, Z. Li, M. Kurita, T. Hishida, M. Li, E. Aizawa, S. Guo, S. Chen, A. Goebl, R. D. Soligalla, J. Qu, T. Jiang, X. Fu, M. Jafari, C. R. Esteban, W. T. Berggren, J. Lajara, E. Nuñez-Delicado, P. Guillen, J. M. Campistol, F. Matsuzaki, G. H. Liu, P. Magistretti, K. Zhang, E. M. Callaway, K. Zhang, and J. C. I. Belmonte (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 540: 144–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sfeir, A. and L. S. Symington (2015) Microhomology-mediated end joining: A back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 40: 701–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakade, S., T. Tsubota, Y. Sakane, S. Kume, N. Sakamoto, M. Obara, T. Daimon, H. Sezutsu, T. Yamamoto, T. Sakuma, and K. T. Suzuki (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 5: 5560.

    Article  CAS  PubMed  Google Scholar 

  53. Hisano, Y., T. Sakuma, S. Nakade, R. Ohga, S. Ota, H. Okamoto, T. Yamamoto, and A. Kawahara (2015) Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci. Rep. 5: 8841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sakuma, T., M. Takenaga, Y. Kawabe, T. Nakamura, M. Kamihira, and T. Yamamoto (2015) Homologous recombination-independent large gene cassette knock-in in CHO cells using TALEN and MMEJ-directed donor plasmids. Int. J. Mol. Sci. 16: 23849–23866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aida, T., S. Nakade, T. Sakuma, Y. Izu, A. Oishi, K. Mochida, H. Ishikubo, T. Usami, H. Aizawa, T. Yamamoto, and K. Tanaka (2016) Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ. BMC Genomics. 17: 979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Nakade, S., K. Mochida, A. Kunii, K. Nakamae, T. Aida, K. Tanaka, N. Sakamoto, T. Sakuma, and T. Yamamoto (2018) Biased genome editing using the local accumulation of DSB repair molecules system. Nat. Commun. 9: 3270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yao, X., X. Wang, X. Hu, Z. Liu, J. Liu, H. Zhou, X. Shen, Y. Wei, Z. Huang, W. Ying, Y. Wang, Y. H. Nie, C. C. Zhang, S. Li, L. Cheng, Q. Wang, Y. Wu, P. Huang, Q. Sun, L. Shi, and H. Yang (2017) Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res. 27: 801–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, J. P., X. L. Li, G. H. Li, W. Chen, C. Arakaki, G. D. Botimer, D. Baylink, L. Zhang, W. Wen, Y. W. Fu, J. Xu, N. Chun, W. Yuan, T. Cheng, and X. B. Zhang (2017) Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. 18: 35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Shin, S. W. and J. S. Lee (2020) Optimized CRISPR/Cas9 strategy for homology-directed multiple targeted integration of transgenes in CHO cells. Biotechnol. Bioeng. 117: 1895–1903.

    Article  CAS  PubMed  Google Scholar 

  60. Yao, X., M. Zhang, X. Wang, W. Ying, X. Hu, P. Dai, F. Meng, L. Shi, Y. Sun, N. Yao, W. Zhong, Y. Li, K. Wu, W. Li, Z. J. Chen, and H. Yang (2018) Tild-CRISPR allows for efficient and precise gene knockin in mouse and human cells. Dev. Cell. 45: 526–536.e5.

    Article  CAS  PubMed  Google Scholar 

  61. Maruyama, T., S. K. Dougan, M. C. Truttmann, A. M. Bilate, J. R. Ingram, and H. L. Ploegh (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33: 538–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chu, V. T., T. Weber, B. Wefers, W. Wurst, S. Sander, K. Rajewsky, and R. Kühn (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33: 543–548.

    Article  CAS  PubMed  Google Scholar 

  63. Robert, F., M. Barbeau, S. Éthier, J. Dostie, and J. Pelletier (2015) Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med. 7: 93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Song, J., D. Yang, J. Xu, T. Zhu, Y. E. Chen, and J. Zhang (2016) RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun. 7: 10548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pinder, J., J. Salsman, and G. Dellaire (2015) Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res. 43: 9379–9392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yu, C., Y. Liu, T. Ma, K. Liu, S. Xu, Y. Zhang, H. Liu, M. La Russa, M. Xie, S. Ding, and L. S. Qi (2015) Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. 16: 142–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lin, S., B. T. Staahl, R. K. Alla, and J. A. Doudna (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. 3: e04766.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yang, D., M. A. Scavuzzo, J. Chmielowiec, R. Sharp, A. Bajic, and M. Borowiak (2016) Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci. Rep. 6: 21264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Freire, C. A. M. (2017) Genome Editing via CRISPR/Cas9 Targeted Integration in CHO Cells. M. A. Thesis. Instituto Superior Técnico, Lisbon, Portugal.

    Google Scholar 

  70. Gutschner, T., M. Haemmerle, G. Genovese, G F. Draetta, and L. Chin (2016) Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep. 14: 1555–1566.

    Article  CAS  PubMed  Google Scholar 

  71. Vicente, M. M., A. Mendes, M. Cruz, J. R. Vicente, and V. M. Barreto (2019) A CyclinB2-Cas9 fusion promotes the homology-directed repair of double-strand breaks. bioRxiv. 555144.

  72. Jayavaradhan, R., D. M. Pillis, M. Goodman, F. Zhang, Y. Zhang, P. R. Andreassen, and P. Malik (2019) CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nat. Commun. 10: 2866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Charpentier, M., A. H. Y. Khedher, S. Menoret, A. Brion, K. Lamribet, E. Dardillac, C. Boix, L. Perrouault, L. Tesson, S. Geny, A. De Cian, J. M. Itier, I. Anegon, B. Lopez, C. Giovannangeli, and J. P. Concordet (2018) CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat. Commun. 9: 1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tran, N. T., S. Bashir, X. Li, J. Rossius, V. T. Chu, K. Rajewsky, and R. Kühn (2019) Enhancement of precise gene editing by the association of Cas9 with homologous recombination factors. Front. Genet. 10: 365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reuven, N., J. Adler, K. Broennimann, N. Myers, and Y. Shaul (2019) Recruitment of DNA repair MRN complex by intrinsically disordered protein domain fused to Cas9 improves efficiency of CRISPR-mediated genome editing. Biomolecules. 9: 584.

    Article  CAS  PubMed Central  Google Scholar 

  76. Akhtar, W., J. de Jong, A. V. Pindyurin, L. Pagie, W. Meuleman, J. de Ridder, A. Berns, L. F. A. Wessels, M. van Lohuizen, and B. van Steensel (2013) Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell. 154: 914–927.

    Article  CAS  PubMed  Google Scholar 

  77. Dekker, J., M. A. Marti-Renom, and L. A. Mirny (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14: 390–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Baik, J. Y. and K. H. Lee (2017) A framework to quantify karyotype variation associated with CHO cell line instability at a single-cell level. Biotechnol. Bioeng. 114: 1045–1053.

    Article  CAS  PubMed  Google Scholar 

  79. Pristovšek, N., S. Nallapareddy, L. M. Grav, H. Hefzi, N. E. Lewis, P. Rugbjerg, H. G. Hansen, G. M. Lee, M. R. Andersen, and H. F. Kildegaard (2019) Systematic evaluation of site-specific recombinant gene expression for programmable mammalian cell engineering. ACS Synth. Biol. 8: 758–774.

    Article  PubMed  CAS  Google Scholar 

  80. Zhou, S., X. Ding, L. Yang, Y. Chen, X. Gong, J. Jin, and H. Li (2019) Discovery of a stable expression hot spot in the genome of Chinese hamster ovary cells using lentivirus-based random integration. Biotechnol. Biotechnol. Equip. 33: 605–612.

    Article  CAS  Google Scholar 

  81. Cheng, J. K., A. M. Lewis, D. S. Kim, T. Dyess, and H. S. Alper (2016) Identifying and retargeting transcriptional hot spots in the human genome. Biotechnol. J. 11: 1100–1109.

    Article  CAS  PubMed  Google Scholar 

  82. Kawabe, Y., S. Komatsu, S. Komatsu, M. Murakami, A. Ito, T. Sakuma, T. Nakamura, T. Yamamoto, and M. Kamihira (2018) Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems. J. Biosci. Bioeng. 125: 599–605.

    Article  CAS  PubMed  Google Scholar 

  83. Zhou, S., Y. Chen, X. Gong, J. Jin, and H. Li (2019) Site-specific integration of light chain and heavy chain genes of antibody into CHO-K1 stable hot spot and detection of antibody and fusion protein expression level. Prep. Biochem. Biotechnol. 49: 384–390.

    Article  CAS  PubMed  Google Scholar 

  84. Lee, J. S., J. H. Park, T. K. Ha, M. Samoudi, N. E. Lewis, B. O. Palsson, H. F. Kildegaard, and G. M. Lee (2018) Revealing key determinants of clonal variation in transgene expression in recombinant CHO cells using targeted genome editing. ACS Synth. Biol. 7: 2867–2878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lombardo, A., D. Cesana, P. Genovese, B. Di Stefano, E. Provasi, D. F. Colombo, M. Neri, Z. Magnani, A. Cantore, P. Lo Riso, M. Damo, O. M. Pello, M. C. Holmes, P. D. Gregory, A. Gritti, V. Broccoli, C. Bonini, and L. Naldini (2011) Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat. Methods. 8: 861–869.

    Article  CAS  PubMed  Google Scholar 

  86. Nguyen, H. Q. and G. Bosco (2015) Gene positioning effects on expression in eukaryotes. Annu. Rev. Genet. 49: 627–646.

    Article  CAS  PubMed  Google Scholar 

  87. Rupp, O., M. L. MacDonald, S. Li, H. Dhiman, S. Polson, S. Griep, K. Heffner, I. Hernandez, K. Brinkrolf, V. Jadhav, M. Samoudi, H. Hao, B. Kingham, A. Goesmann, M. J. Betenbaugh, N. E. Lewis, N. Borth, and K. H. Lee (2018) A reference genome of the Chinese hamster based on a hybrid assembly strategy. Biotechnol. Bioeng. 115: 2087–2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, S., S. W. Cha, K. Heffner, D. B. Hizal, M. A. Bowen, R. Chaerkady, R. N. Cole, V. Tejwani, P. Kaushik, M. Henry, P. Meleady, S. T. Sharfstein, M. J. Betenbaugh, V. Bafna, and N. E. Lewis (2019) Proteogenomic annotation of Chinese hamsters reveals extensive novel translation events and endogenous retroviral elements. J. Proteome Res. 18: 2433–2445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Feichtinger, J., I. Hernández, C. Fischer, M. Hanscho, N. Auer, M. Hackl, V. Jadhav, M. Baumann, P. M. Krempl, C. Schmidl, M. Farlik, M. Schuster, A. Merkel, A. Sommer, S. Heath, D. Rico, C. Bock, G. G. Thallinger, and N. Borth (2016) Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time. Biotechnol. Bioeng. 113: 2241–2253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hefzi, H., K. S. Ang, M. Hanscho, A. Bordbar, D. Ruckerbauer, M. Lakshmanan, C. A. Orellana, D. Baycin-Hizal, Y. Huang, D. Ley, V. S. Martinez, S. Kyriakopoulos, N. E. Jiménez, D. C. Zielinski, L. E. Quek, T. Wulff, J. Arnsdorf, S. Li, J. S. Lee, G. Paglia, N. Loira, P. N. Spahn, L. E. Pedersen, J. M. Gutierrez, Z. A. King, A. M. Lund, H. Nagarajan, A. Thomas, A. M. Abdel-Haleem, J. Zanghellini, H. F. Kildegaard, B. G. Voldborg, Z. P. Gerdtzen, M. J. Betenbaugh, B. O. Palsson, M. R. Andersen, L. K. Nielsen, N. Borth, D. Y. Lee, and N. E. Lewis (2016) A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst. 3: 434–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gutierrez, J. M., A. Feizi, S. Li, T. B. Kallehauge, H. Hefzi, L. M. Grav, D. Ley, D. B. Hizal, M. J. Betenbaugh, B. Voldborg, H. F. Kildegaard, G. M. Lee, B. O. Palsson, J. Nielsen, and N. E. Lewis (2020) Genome-scale reconstructions of the mammalian secretory pathway predict metabolic costs and limitations of protein secretion. Nat. Commun. 11: 68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sadelain, M., E. P. Papapetrou, and F. D. Bushman (2011) Safe harbours for the integration of new DNA in the human genome. Nat. Rev. Cancer. 12: 51–58.

    Article  PubMed  CAS  Google Scholar 

  93. Hong, J. K., M. Lakshmanan, C. Goudar, and D. Y. Lee (2018) Towards next generation CHO cell line development and engineering by systems approaches. Curr. Opin. Chem. Eng. 22: 1–10.

    Article  Google Scholar 

  94. Banan, M. (2020) Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells. J. Biotechnol. 308: 1–9.

    Article  CAS  PubMed  Google Scholar 

  95. Scarcelli, J. J., T. Q. Shang, T. Iskra, M. J. Allen, and L. Zhang (2017) Strategic deployment of CHO expression platforms to deliver Pfizer’s Monoclonal Antibody Portfolio. Biotechnol. Prog. 33: 1463–1467.

    Article  CAS  PubMed  Google Scholar 

  96. Cohen, J. (2019) CRISPR patent fight revived. Science. 365: 15–16.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NRF funded by the Korean government (2018R1C1B6001423 and 2019R1A 6A1A11051471).

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Seong Lee.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S.W., Lee, J.S. CHO Cell Line Development and Engineering via Site-specific Integration: Challenges and Opportunities. Biotechnol Bioproc E 25, 633–645 (2020). https://doi.org/10.1007/s12257-020-0093-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0093-7

Keywords

Navigation