Skip to main content

Advertisement

Log in

Thermo-kinetic investigation of the multi-step pyrolysis of smoked cigarette butts towards its energy recovery potential

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The present study attempts to explore the energy potential of smoked cigarette butts (SCB) through pyrolysis. For the first time, the pyrolysis characteristics, including the kinetic triplet and the thermodynamic parameters, were investigated using non-isothermal thermogravimetry. Firstly, three pseudo-components were successfully deconvoluted from the multiple-step pyrolysis of SCB using the asymmetrical Fraser-Suzuki function, which corresponds to the devolatilization reactions of retained organic volatile components (PS-1), unburned tobacco (PS-2), and cellulose acetate fibers (PS-3). Posteriorly, the isoconversional methods of Friedman, Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, and Starink were used to obtain the activation energy values, which were lower for PS-1 (from 101.87 to 108.77 kJ mol−1). The frequency factor values for SCB pyrolysis determined by the compensation effect method were 1.77 × 1012 min−1 for PS-1, 9.44 × 1016 min−1 for PS-2, and 9.62 × 1020 min−1 for PS-3. According to the master plot method, the three pseudo-components followed nth-order reaction models. An acceptable correspondence was observed between experimental and reconstructed pyrolysis behavior, proving the representativity and reliability of the obtained kinetic triplets. Both positive values of ΔH and ΔG suggest that the pyrolytic conversion of smoked cigarette butts into biofuels can be considered as a non-spontaneous conversion. These pyrolysis-related findings from SCB can be used to offer a good opportunity for its valorization as an energy commodity instead of a neglected solid residue.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A (min−1):

frequency factor

a (dimensionless):

compensation parameter

b (dimensionless):

compensation parameter

c (dimensionless):

contributed fraction in conversion

DTG (wt% min−1):

differential thermogravimetric

(dα/dt)av (min−1):

average of experimental values

(dα/dt)dec (min−1):

values from deconvolution

(dα/dt)exp (min−1):

experimental values measured

E a (kJ mol−1):

apparent activation energy

f(α) (dimensionless):

reaction model

FC (wt%):

fixed carbon

FR:

Friedman

FWO:

Flynn-Wall-Ozawa

g(α) (dimensionless):

integral form of the reaction model

HHV (MJ kg−1):

higher heating value

h (J s−1):

Plank constant

KAS:

Kissinger-Akahira-Sunose

k B (J K−1):

Boltzmann constant

LHV (MJ kg−1):

lower heating value

M (dimensionless):

total number of points used for deconvolution

My (dimensionless):

mean residual

m 0 (g):

initial mass

m (g):

final mass

N (dimensionless):

total of componets proposed for residue

p(x) (dimensionless):

approximation for temperature integral equation

PS:

pseudo-component

QOF (dimensionless):

quality of fit

R (kJ mol−1 K−1):

gas constant

R 2 (dimensionless):

coefficient of determination

RSS (dimensionless):

residual sum of squares

s (dimensionless):

asymmetry shape parameter

SCB:

smoked cigarette butts

STK:

Starink

t (min):

time

T (K):

temperature

TGA (wt%):

thermogravimetric analysis

T m (K):

maximum temperature peak

T p (K):

peak temperature

VM (wt%):

volatile matter

w (dimensionless):

half-width in the curve

y (dimensionless):

residual

α (dimensionless):

physical parameters of conversion

β (K min−1):

heating rate

η (dimensionless):

contribution of pseudo-component

θ (dimensionless):

amplitude

ΔG (kJ mol−1):

Gibb’s free energy change

ΔH (kJ mol−1):

enthalpy change

ΔS (J mol−1 K−1):

entropy change

References

  1. Mumbach GD, Alves JLF, Da Silva JCG et al (2019) Thermal investigation of plastic solid waste pyrolysis via the deconvolution technique using the asymmetric double sigmoidal function: determination of the kinetic triplet, thermodynamic parameters, thermal lifetime and pyrolytic oil composition for clean. Energy Convers Manag 200:112031. https://doi.org/10.1016/j.enconman.2019.112031

    Article  Google Scholar 

  2. Czajczyńska D, Anguilano L, Ghazal H, Krzyżyńska R, Reynolds AJ, Spencer N, Jouhara H (2017) Potential of pyrolysis processes in the waste management sector. Therm Sci Eng Prog 3:171–197. https://doi.org/10.1016/j.tsep.2017.06.003

    Article  Google Scholar 

  3. Glugoski LP, de Jesus CP, Fujiwara ST (2017) Reactive Black 5 dye degradation using filters of smuggled cigarette modified with Fe3+. Environ Sci Pollut Res 24:6143–6150. https://doi.org/10.1007/s11356-016-6820-0

    Article  Google Scholar 

  4. d’Heni Teixeira MB, Duarte MAB, Raposo Garcez L, Camargo Rubim J, Hofmann Gatti T, Suarez PAZ (2017) Process development for cigarette butts recycling into cellulose pulp. Waste Manag 60:140–150. https://doi.org/10.1016/j.wasman.2016.10.013

    Article  Google Scholar 

  5. Sun H, La P, Yang R et al (2017) Innovative nanoporous carbons with ultrahigh uptakes for capture and reversible storage of CO2 and volatile iodine. J Hazard Mater 321:210–217. https://doi.org/10.1016/j.jhazmat.2016.09.015

    Article  Google Scholar 

  6. Slaughter E, Gersberg RM, Watanabe K, Rudolph J, Stransky C, Novotny TE (2011) Toxicity of cigarette butts, and their chemical components, to marine and freshwater fish. Tob Control 20:i25–i29. https://doi.org/10.1136/tc.2010.040170

    Article  Google Scholar 

  7. Soltani SM, Yazdi SK, Hosseini S, Gargari MK (2014) Effect of nitric acid modification on porous characteristics of mesoporous char synthesized from the pyrolysis of used cigarette filters. J Environ Chem Eng 2:1301–1308. https://doi.org/10.1016/j.jece.2014.04.005

    Article  Google Scholar 

  8. Wang W, Wang M, Huang J, Li X, Cai L, Shi SQ, Cui Y, Chen L, Ni Y (2020) High efficiency pyrolysis of used cigarette filters for ester-rich bio-oil through microwave-assisted heating. J Clean Prod 257:120596. https://doi.org/10.1016/j.jclepro.2020.120596

    Article  Google Scholar 

  9. Koochaki CB, Khajavi R, Rashidi A, Mansouri N, Yazdanshenas ME (2019) The effect of pre-swelling on the characteristics of obtained activated carbon from cigarette butts fibers. Biomass Convers Biorefinery 10:227–236. https://doi.org/10.1007/s13399-019-00429-x

    Article  Google Scholar 

  10. Naqvi SR, Prabhakara HM, Bramer EA, Dierkes W, Akkerman R, Brem G (2018) A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour Conserv Recycl 136:118–129. https://doi.org/10.1016/j.resconrec.2018.04.013

    Article  Google Scholar 

  11. Qureshi MS, Oasmaa A, Pihkola H, Deviatkin I, Tenhunen A, Mannila J, Minkkinen H, Pohjakallio M, Laine-Ylijoki J (2020) Pyrolysis of plastic waste: opportunities and challenges. J Anal Appl Pyrolysis 148:104804. https://doi.org/10.1016/j.jaap.2020.104804

    Article  Google Scholar 

  12. Naqvi SR, Uemura Y, Osman NB, Yusup S, Nuruddin MF (2014) Physiochemical properties of pyrolysis oil derived from fast pyrolysis of wet and dried rice husk in a free fall reactor. Appl Mech Mater 625:604–607. https://doi.org/10.4028/www.scientific.net/AMM.625.604

    Article  Google Scholar 

  13. Samolada MC, Zabaniotou AA (2014) Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Manag 34:411–420. https://doi.org/10.1016/j.wasman.2013.11.003

    Article  Google Scholar 

  14. Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2014) Influence of the microwave absorbent and moisture content on the microwave pyrolysis of an organic municipal solid waste. J Anal Appl Pyrolysis 105:234–240. https://doi.org/10.1016/j.jaap.2013.11.009

    Article  Google Scholar 

  15. Borges NB, Campos JR, Pablos JM (2015) Characterization of residual sand removed from the grit chambers of a wastewater treatment plant and its use as fine aggregate in the preparation of non-structural concrete. Water Pract Technol 10:164–171. https://doi.org/10.2166/wpt.2015.018

    Article  Google Scholar 

  16. Janković B (2014) The pyrolysis of coffee paper cup waste samples using non-isothermal thermo-analytical techniques. The use of combined kinetic and statistical analysis in the interpretation of mechanistic features of the process. Energy Convers Manag 85:33–49. https://doi.org/10.1016/j.enconman.2014.05.094

    Article  Google Scholar 

  17. Liu H, Wang C, Zhang J, Zhao W, Fan M (2020) Pyrolysis kinetics and thermodynamics of typical plastic waste. Energy Fuel 34:2385–2390. https://doi.org/10.1021/acs.energyfuels.9b04152

    Article  Google Scholar 

  18. Aslan DI, Özoğul B, Ceylan S, Geyikçi F (2018) Thermokinetic analysis and product characterization of medium density fiberboard pyrolysis. Bioresour Technol 258:105–110. https://doi.org/10.1016/j.biortech.2018.02.126

    Article  Google Scholar 

  19. Tahir MH, Çakman G, Goldfarb JL, Topcu Y, Naqvi SR, Ceylan S (2019) Demonstrating the suitability of canola residue biomass to biofuel conversion via pyrolysis through reaction kinetics, thermodynamics and evolved gas analyses. Bioresour Technol 279:67–73. https://doi.org/10.1016/j.biortech.2019.01.106

    Article  Google Scholar 

  20. White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis 91:1–33. https://doi.org/10.1016/j.jaap.2011.01.004

    Article  Google Scholar 

  21. Yao Z, Yu S, Su W, Wu W, Tang J, Qi W (2020) Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods. Waste Manag Res 38:77–85. https://doi.org/10.1177/0734242X19897814

    Article  Google Scholar 

  22. Mishra A, Kumari U, Turlapati VY, Siddiqi H, Meikap BC (2020) Extensive thermogravimetric and thermo-kinetic study of waste motor oil based on iso-conversional methods. Energy Convers Manag 221:113194. https://doi.org/10.1016/j.enconman.2020.113194

    Article  Google Scholar 

  23. da Silva JCG, de Albuquerque JG, Galdino WV de A, et al. (2020) Single-step and multi-step thermokinetic study – deconvolution method as a simple pathway for describe properly the biomass pyrolysis for energy conversion. Energy Convers Manag 209:112653. https://doi.org/10.1016/j.enconman.2020.112653

    Article  Google Scholar 

  24. Siddiqi H, Kumari U, Biswas S, Mishra A, Meikap BC (2020) A synergistic study of reaction kinetics and heat transfer with multi-component modelling approach for the pyrolysis of biomass waste. Energy 204:117933. https://doi.org/10.1016/j.energy.2020.117933

    Article  Google Scholar 

  25. Hameed Z, Naqvi SR, Naqvi M, Ali I, Taqvi SAA, Gao N, Hussain SA, Hussain S (2020) A comprehensive review on thermal coconversion of biomass, sludge, coal, and their blends using thermogravimetric analysis. J Chemother 2020:1–23. https://doi.org/10.1155/2020/5024369

    Article  Google Scholar 

  26. Naqvi SR, Ali I, Nasir S, Ali Ammar Taqvi S, Atabani AE, Chen WH (2020) Assessment of agro-industrial residues for bioenergy potential by investigating thermo-kinetic behavior in a slow pyrolysis process. Fuel 278:118259. https://doi.org/10.1016/j.fuel.2020.118259

    Article  Google Scholar 

  27. Hameed Z, Aman Z, Naqvi SR, Tariq R, Ali I, Makki AA (2018) Kinetic and thermodynamic analyses of sugar cane bagasse and sewage sludge co-pyrolysis process. Energy Fuel 32:9551–9558. https://doi.org/10.1021/acs.energyfuels.8b01972

    Article  Google Scholar 

  28. Fernandez A, Ortiz LR, Asensio D, Rodriguez R, Mazza G (2020) Kinetic analysis and thermodynamics properties of air/steam gasification of agricultural waste. J Environ Chem Eng 8:103829. https://doi.org/10.1016/j.jece.2020.103829

    Article  Google Scholar 

  29. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  Google Scholar 

  30. Manić N, Janković B, Pijović M, Waisi H, Dodevski V, Stojiljković D, Jovanović V (2020) Apricot kernel shells pyrolysis controlled by non-isothermal simultaneous thermal analysis (STA). J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09307-5

  31. ASTM (2014) E1131-08: Standard test method for compositional analysis by thermogravimetry. In: Annual Book of ASTM Standards. ASTM International, West Conshohocken, pp 1– 6. https://doi.org/10.1520/E1131-08R14

  32. ASTM (2008) D5373-08: Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in laboratory samples of coal. In: Annual Book of ASTM Standards. ASTM International, West Conshohocken, pp 1–9. https://doi.org/10.1520/D5373-08

  33. Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063. https://doi.org/10.1016/S0016-2361(01)00131-4

    Article  Google Scholar 

  34. Alves JLF, Da Silva JCG, da Silva Filho VF et al (2019) Bioenergy potential of red macroalgae Gelidium floridanum by pyrolysis: evaluation of kinetic triplet and thermodynamics parameters. Bioresour Technol 291:121892. https://doi.org/10.1016/j.biortech.2019.121892

    Article  Google Scholar 

  35. Van de Velden M, Baeyens J, Boukis I (2008) Modeling CFB biomass pyrolysis reactors. Biomass Bioenergy 32:128–139. https://doi.org/10.1016/j.biombioe.2007.08.001

    Article  Google Scholar 

  36. Vyazovkin S, Chrissafis K, Di Lorenzo ML et al (2014) ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23. https://doi.org/10.1016/j.tca.2014.05.036

    Article  Google Scholar 

  37. Alves JLF, Da Silva JCG, da Silva Filho VF et al (2019) Determination of the bioenergy potential of Brazilian pine-fruit shell via pyrolysis kinetics, thermodynamic study, and evolved gas analysis. Bioenergy Res 12:168–183. https://doi.org/10.1007/s12155-019-9964-1

    Article  Google Scholar 

  38. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA (2011) Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B 115:1780–1791. https://doi.org/10.1021/jp110895z

    Article  Google Scholar 

  39. Vyazovkin S (2015) Isoconversional kinetics of thermally stimulated processes, 1st edn. Springer International Publishing, Cham

    Google Scholar 

  40. Konwar K, Nath HP, Bhuyan N, Saikia BK, Borah RC, Kalita AC, Saikia N (2019) Effect of biomass addition on the devolatilization kinetics, mechanisms and thermodynamics of a northeast Indian low rank sub-bituminous coal. Fuel 256:115926. https://doi.org/10.1016/j.fuel.2019.115926

    Article  Google Scholar 

  41. Boonchom B (2008) Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dihydrate. J Chem Eng Data 53:1533–1538. https://doi.org/10.1021/je800103w

    Article  Google Scholar 

  42. Danvirutai C, Noisong P, Youngme S (2010) Some thermodynamic functions and kinetics of thermal decomposition of NH4MnPO4 • H2O in nitrogen atmosphere. J Therm Anal Calorim 100:117–124. https://doi.org/10.1007/s10973-009-0017-4

    Article  Google Scholar 

  43. Boonchom B, Puttawong S (2010) Thermodynamics and kinetics of the dehydration reaction of FePO4·2H2O. Phys B Condens Matter 405:2350–2355. https://doi.org/10.1016/j.physb.2010.02.046

    Article  Google Scholar 

  44. Mythili R, Venkatachalam P, Subramanian P, Uma D (2013) Characterization of bioresidues for biooil production through pyrolysis. Bioresour Technol 138:71–78. https://doi.org/10.1016/j.biortech.2013.03.161

    Article  Google Scholar 

  45. Kalkreuth W, Holz M, Kern M, Machado G, Mexias A, Silva MB, Willett J, Finkelman R, Burger H (2006) Petrology and chemistry of Permian coals from the Paraná Basin: 1. Santa Terezinha, Leão-Butiá and Candiota Coalfields, Rio Grande do Sul, Brazil. Int J Coal Geol 68:79–116. https://doi.org/10.1016/j.coal.2005.10.006

    Article  Google Scholar 

  46. Alves JLF, da Silva JCG, Mumbach GD, Domenico MD, da Silva Filho VF, de Sena RF, Machado RAF, Marangoni C (2020) Insights into the bioenergy potential of jackfruit wastes considering their physicochemical properties, bioenergy indicators, combustion behaviors, and emission characteristics. Renew Energy 155:1328–1338. https://doi.org/10.1016/j.renene.2020.04.025

    Article  Google Scholar 

  47. Maderuelo-Sanz R, Gómez Escobar V, Meneses-Rodríguez JM (2018) Potential use of cigarette filters as sound porous absorber. Appl Acoust 129:86–91. https://doi.org/10.1016/j.apacoust.2017.07.011

    Article  Google Scholar 

  48. Olugbade TO, Ojo OT (2020) Biomass Torrefaction for the production of high-grade solid biofuels: a review. BioEnergy Res. https://doi.org/10.1007/s12155-020-10138-3

  49. Olugbade T, Ojo O, Mohammed T (2019) Influence of binders on combustion properties of biomass briquettes: a recent review. BioEnergy Res 12:241–259. https://doi.org/10.1007/s12155-019-09973-w

    Article  Google Scholar 

  50. Olugbade TO, Ojo OT (2020) Binderless briquetting technology for lignite briquettes: a review. Energy, Ecol Environ. https://doi.org/10.1007/s40974-020-00165-3

  51. Fan G, Liao C, Fang T, Luo S, Song G (2014) Amberlyst 15 as a new and reusable catalyst for the conversion of cellulose into cellulose acetate. Carbohydr Polym 112:203–209. https://doi.org/10.1016/j.carbpol.2014.05.082

    Article  Google Scholar 

  52. Calabuig E, Juárez-Serrano N, Marcilla A (2019) TG-FTIR study of evolved gas in the decomposition of different types of tobacco. Effect of the addition of SBA-15. Thermochim Acta 671:209–219. https://doi.org/10.1016/j.tca.2018.12.006

    Article  Google Scholar 

  53. Idris SS, Rahman NA, Ismail K (2012) Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresour Technol 123:581–591. https://doi.org/10.1016/j.biortech.2012.07.065

    Article  Google Scholar 

  54. Kibet J, Kurgat C, Limo S, Rono N, Bosire J (2016) Kinetic modeling of nicotine in mainstream cigarette smoking. Chem Cent J 10:60. https://doi.org/10.1186/s13065-016-0206-8

    Article  Google Scholar 

  55. Wang X, Wang Z, Dai Y, Ma K, Zhu L, Tan H (2017) Thermogravimetric study on the flue-cured tobacco leaf pyrolysis and combustion using a distributed activation energy model. Asia-Pacific J Chem Eng 12:75–84. https://doi.org/10.1002/apj.2055

    Article  Google Scholar 

  56. Zhao D, Dai Y, Chen K, Sun Y, Yang F, Chen K (2013) Effect of potassium inorganic and organic salts on the pyrolysis kinetics of cigarette paper. J Anal Appl Pyrolysis 102:114–123. https://doi.org/10.1016/j.jaap.2013.03.007

    Article  Google Scholar 

  57. Henrique MA, Flauzino Neto WP, Silvério HA, Martins DF, Gurgel LVA, Barud HS, Morais LC, Pasquini D (2015) Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids. Ind Crop Prod 76:128–140. https://doi.org/10.1016/j.indcrop.2015.06.048

    Article  Google Scholar 

  58. Starink MJ (2003) The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176. https://doi.org/10.1016/S0040-6031(03)00144-8

    Article  Google Scholar 

Download references

Funding

This work was supported by Brazil’s National Council for Scientific and Technological Development (CNPq/Brazil Process 423869/2016-7) and Brazil’s Coordination for the Improvement of Higher Education Personnel (CAPES/Brazil Finance Code 001). This work was developed in the Laboratory of Activated Carbon (LCA/UFPB) and Laboratory of Control and Polymerization Processes (LCP/UFSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luiz Francisco Alves.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, J.L.F., da Silva, J.C.G., Mumbach, G.D. et al. Thermo-kinetic investigation of the multi-step pyrolysis of smoked cigarette butts towards its energy recovery potential. Biomass Conv. Bioref. 12, 741–755 (2022). https://doi.org/10.1007/s13399-020-01077-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01077-2

Keywords

Navigation