Skip to main content
Log in

Current advance in biological production of short-chain organic acid

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

As natural metabolites, organic acids have been widely applied in food, pharmaceutical, and bio-based materials industries. Particularly, the short-chain organic acids, including C2, C3, C4, C5, and C6 organic acids, are necessary intermediate metabolites in cells and are also alternatives to some commercial chemical products. As the necessary metabolites in cells, most major short-chain organic acids can be produced through microbial fermentation. Specifically, with the development of synthetic biology, metabolic engineering could endow cells with the ability to produce more short-chain organic acid products including propionic acid, pyruvate, lactic acid, 3-hydroxypropionic acid, malic acid, succinic acid, fumaric acid, butyric acid, itaconic acid, α-ketoglutaric acid, glutaric acid, citric acid, gluconic acid, muconic acid, adipic acid, xylonic acid, and so on. The recent advances in the biological production of short-chain organic acids, as well as the challenges and perspectives, are summarized in this review to promote the generation of microbial cell factories for the production of short-chain organic acids.

Key points

• Outlines the production strategy of short-chain organic acids

• Provide guidance for efficient synthesis of short-chain organic acids

• Impacts the necessary factor of acid resistance on the successful production of host cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alonso S, Rendueles M, Díaz M (2015) Microbial production of specialty organic acids from renewable and waste materials. Crit Rev Biotechnol 35:497–513

    PubMed  Google Scholar 

  • Baek SH, Kwon EY, Kim YH, Hahn JS (2016) Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100:2737–2748

    CAS  PubMed  Google Scholar 

  • Basak S, Geng H, Jiang R (2014) Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH. J Biotechnol 173:68–75

    CAS  PubMed  Google Scholar 

  • Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Edit 54:3328–3350

    CAS  Google Scholar 

  • Becker J, Lange A, Fabarius J, Wittmann C (2015) Top value platform chemicals: bio-based production of organic acids. Curr Opin Biotechnol 36:168–175

    CAS  PubMed  Google Scholar 

  • Becker J, Kuhl M, Kohlstedt M, Starck S, Wittmann C (2018) Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Microb Cell Factories 17:115

    Google Scholar 

  • Bian Y, Li L, Dong M, Liu X, Kaneko T, Cheng K, Liu H, Voss C, Cao X, Wang Y, Litchfield D, Ye M, Li SSC, Zou H (2016) Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder. Nat Chem Biol 12:959–966

    CAS  PubMed  Google Scholar 

  • Blumhoff M, Steiger MG, Mattanovich D, Sauer M (2013) Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger. Metab Eng 19:26–32

    CAS  PubMed  Google Scholar 

  • Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D (2013) Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid. Appl Microbiol Biotechnol 97:8903–8912

    CAS  PubMed  Google Scholar 

  • Chae TU, Ahn JH, Ko YS, Kim JW, Lee JA, Lee EH, Lee SY (2020) Metabolic engineering for the production of dicarboxylic acids and diamines. Metab Eng 58:2–16

    CAS  PubMed  Google Scholar 

  • Chen C, Ding S, Wang D, Li Z, Ye Q (2014a) Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111. Bioresour Technol 163:100–105

    CAS  PubMed  Google Scholar 

  • Chen T, Zhu N, Xia H (2014b) Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum. Bioresour Technol 151:411–414

    CAS  PubMed  Google Scholar 

  • Cheng KK, Wang GY, Zeng J, Zhang JA (2013) Improved succinate production by metabolic engineering. Biomed Res Int 2013:12

    Google Scholar 

  • Cheng C, Zhou Y, Lin M, Wei P, Yang S (2017) Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: fermentation kinetics and economic analysis. Bioresour Technol 223:166–174

    CAS  PubMed  Google Scholar 

  • Cheong S, Clomburg JM, Gonzalez R (2016) Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions. Nat Biotechnol 34:556–561

    CAS  PubMed  Google Scholar 

  • Choi SS, Seo SY, Park SO, Lee HN, Song JS, Kim JY, Park JH, Kim S, Lee SJ, Chun GT, Kim ES (2019) Cell factory design and culture process optimization for dehydroshikimate biosynthesis in Escherichia coli. Front Bioeng Biotechnol 7:241

    PubMed  PubMed Central  Google Scholar 

  • Choi S, Lee HN, Park E, Lee SJ, Kim ES (2020) Recent advances in microbial production of cis,cis-muconic acid. Biomolecules 10:1238

    CAS  Google Scholar 

  • Christopher DD, David JS, Ned SW, Joshua DR (2011) α-ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat Chem Biol 7:894–901

    Google Scholar 

  • Chu HS, Kim YS, Lee CM, Lee JH, Jung WS, Ahn JH, Song SH, Choi IS, Cho KM (2015) Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli. Biotechnol Bioeng 112:356–364

    CAS  PubMed  Google Scholar 

  • Dai Z, Zhou H, Zhang S, Gu H, Yang Q, Zhang W, Dong W, Ma J, Fang Y, Jiang M, Xin F (2018) Current advance in biological production of malic acid using wild type and metabolic engineered strains. Bioresour Technol 258:345–353

    CAS  PubMed  Google Scholar 

  • Deng Y, Mao Y (2015) Biological production of adipic acid from renewable substrates: current and future methods. Biochem Eng J 105:16–26

    Google Scholar 

  • Dhillon GS, Brar SK, Verma M, Tyagi RD (2011) Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol 4:505–529

    CAS  Google Scholar 

  • Ding Q, Luo Q, Zhou J, Chen X, Liu L (2018) Enhancing L-malate production of Aspergillus oryzae FMME218-37 by improving inorganic nitrogen utilization. Appl Microbiol Biotechnol 102:8739–8751

    CAS  PubMed  Google Scholar 

  • Försterr A, Aurich A, Mauersberger S, Barth G (2007) Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 75:1409–1417

    Google Scholar 

  • Fu H, Yang S, Wang M, Wang J, Tang I (2017a) Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization. Bioresour Technol 234:389–396

    CAS  PubMed  Google Scholar 

  • Fu H, Yu L, Lin M, Wang J, Xiu Z, Yang ST (2017b) Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose. Metab Eng 40:50–58

    CAS  PubMed  Google Scholar 

  • Gao C, Xu X, Hu C, Zhang W, Zhang Y, Ma C, Xu P (2010) Pyruvate producing biocatalyst with constitutive NAD-independent lactate dehydrogenases. Process Biochem 45:1912–1915

    CAS  Google Scholar 

  • Gao C, Wang S, Hu G, Guo L, Chen X, Xu P, Liu L (2018) Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning. Biotechnol Bioeng 115:661–672

    CAS  PubMed  Google Scholar 

  • Garcia B, Olivera ER, Minambres B, Fernandez-Valverde M, Canedo LM, Prieto MA, Garcia JL, Martinez M, Luengo JM (1999) Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-coa catabolon. J Biol Chem 274:29228–29241

    CAS  PubMed  Google Scholar 

  • Goldberg I, Rokem J, Pines O (2006) Organic acids: old metabolites, new themes. J Chem Technol Biotechnol 81:1601–1611

    CAS  Google Scholar 

  • Goswami V, Srivastava AK (2001) Propionic acid production in an in situ cell retention bioreactor. Appl Microbiol Biotechnol 56:676–680

    CAS  PubMed  Google Scholar 

  • Guan N, Liu L, Shin HD, Chen RR, Zhang J, Li J, Du G, Shi Z, Chen J (2013) Systems-level understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: mechanism and application. J Biotechnol 167:56–63

    CAS  PubMed  Google Scholar 

  • Guan N, Shin HD, Chen R, Li J, Liu L, Du G, Chen J (2014) Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics. Sci Rep 4:6951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan N, Li J, Shin HD, Wu J, Du G, Shi Z, Liu L, Chen J (2015) Comparative metabolomics analysis of the key metabolic nodes in propionic acid synthesis in Propionibacterium acidipropionici. Metabolomics 11:1106–1116

    CAS  Google Scholar 

  • Guan N, Li J, Shin HD, Du G, Chen J, Liu L (2016) Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii. Biotechnol Bioeng 113:1294–1304

    CAS  PubMed  Google Scholar 

  • He F, Qin S, Yang Z, Bai X, Suo Y, Wang J (2020) Butyric acid production from spent coffee grounds by engineered Clostridium tyrobutyricum overexpressing galactose catabolism genes. Bioresour Technol 304:122977

    CAS  PubMed  Google Scholar 

  • Hevekerl A, Kuenz A, Vorlop KD (2014) Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl Microbiol Biotechnol 98:10005–10012

    CAS  PubMed  Google Scholar 

  • Hossain GS, Li J, Shin HD, Chen RR, Du G, Liu L, Chen J (2014) Bioconversion of L-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing L-amino acid deaminase from Proteus mirabilis. J Biotechnol 169:112–120

    CAS  PubMed  Google Scholar 

  • Hossain GS, Shin HD, Li J, Du G, Chen J, Liu L (2016) Transporter engineering and enzyme evolution for pyruvate production from D/L-alanine with a whole-cell biocatalyst expressing L-amino acid deaminase from Proteus mirabilis. RSC Adv 6:82676–82684

    CAS  Google Scholar 

  • Huang J, Cai J, Wang J, Zhu X, Huang L, Yang ST, Xu Z (2011) Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor. Bioresour Technol 102:3923–3926

    CAS  PubMed  Google Scholar 

  • Huang Y, Li Z, Shimizu K, Ye Q (2013) Co-production of 3-hydroxypropionic acid and 1,3-propanediol by Klebseilla pneumoniae expressing aldH under microaerobic conditions. Bioresour Technol 128:505–512

    CAS  PubMed  Google Scholar 

  • Huang X, Lu X, Li Y, Li X, Li J (2014) Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain. Microb Cell Factories 13:119

    Google Scholar 

  • Jha AK, Li J, Yuan Y, Baral N, Ai B (2014) A review on bio-butyric acid production and its optimization. Int J Agric Biol 16:1019–1024

    CAS  Google Scholar 

  • Jiang L, Cui H, Zhu L, Hu Y, Xu X, Li S, Huang H (2014) Enhanced propionic acid production from whey lactose with immobilized Propionibacterium acidipropionici and role of trehalose synthesis in acid toleranc. Green Chem 17:250–259

    Google Scholar 

  • Jiang M, Ma J, Wu M, Liu R, Liang L, Xin F, Zhang W, Jia H, Dong W (2017) Progress of succinic acid production from renewable resources: metabolic and fermentative strategies. Bioresour Technol 245:1710–1717

    CAS  PubMed  Google Scholar 

  • Joshi DS, Singhvi MS, Khire JM, Gokhale DV (2010) Strain improvement of Lactobacillus lactis for D-lactic acid production. Biotechnol Lett 32:517–520

    CAS  PubMed  Google Scholar 

  • Ju JH, Oh BR, Heo SY, Lee YU, Shon JH, Kim CH, Kim YM, Seo JW, Hong WK (2020) Production of adipic acid by short- and long-chain fatty acid acyl-CoA oxidase engineered in yeast Candida tropicalis. Bioprocess Biosyst Eng 43:33–43

    CAS  PubMed  Google Scholar 

  • Kawai S, Ohashi K, Yoshida S, Fujii M, Mikami S, Sato N, Murata K (2014) Bacterial pyruvate production from alginate, a promising carbon source from marine brown macroalgae. J Biosci Bioeng 117:269–274

    CAS  PubMed  Google Scholar 

  • Kim K, Kim SK, Park YC, Seo JH (2014) Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresour Technol 156:170–175

    CAS  PubMed  Google Scholar 

  • Kim SK, Gui HH, Seong W, Kim H, Lee SG (2016) CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng 38:228–240

    CAS  PubMed  Google Scholar 

  • Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, Mehlmann K, Schneider R, Pleissner D, Rinkel J, Dickschat JS, Venus J, van Duuren JBJH, Wittmann C (2018) From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab Eng 47:279–293

    CAS  PubMed  Google Scholar 

  • Krull S, Hevekerl A, Kuenz A, Prusse U (2017) Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers. Appl Microbiol Biotechnol 101:4063–4072

    CAS  PubMed  Google Scholar 

  • Kuenz A, Gallenmüller Y, Willke T, Vorlop KD (2012) Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol 96:1209–1216

    CAS  PubMed  Google Scholar 

  • Lawrence CL, Botting CH, Antrobus R, Coote PJ (2004) Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 24:3307–3323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li M, Zhang X, Yang P, Liang Q, Qi Q (2013) A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli. Bioresour Technol 149:333–340

    CAS  PubMed  Google Scholar 

  • Li N, Zhang B, Wang Z, Tang Y, Chen T, Zhao X (2014) Engineering Escherichia coli for fumaric acid production from glycerol. Bioresour Technol 174:81–87

    CAS  PubMed  Google Scholar 

  • Li C, Yang X, Gao S, Wang H, Lin CSK (2017) High efficiency succinic acid production from glycerol via in situ fibrous bed bioreactor with an engineered Yarrowia lipolytica. Bioresour Technol 225:9–16

    CAS  PubMed  Google Scholar 

  • Liang L, Liu R, Li F, Wu M, Chen K, Ma J, Jiang M, Wei P, Ouyang P (2013) Repetitive succinic acid production from lignocellulose hydrolysates by enhancement of ATP supply in metabolically engineered Escherichia coli. Bioresour Technol 143:405–412

    CAS  PubMed  Google Scholar 

  • Litsanov B, Brocker M, Bott M (2012) Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Microbiol Biotechnol 78:3325–3337

    CAS  Google Scholar 

  • Liu L, Xu Q, Li Y, Shi Z, Zhu Y, Du G, Chen J (2007) Enhancement of pyruvate production by osmotic-tolerant mutant of Torulopsis glabrata. Biotechnol Bioeng 97:825–832

    CAS  PubMed  Google Scholar 

  • Liu X, Chi Z, Liu G, Wang F, Chi Z (2010) Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metab Eng 12:469–476

    CAS  PubMed  Google Scholar 

  • Liu H, Valdehuesa KN, Nisola GM, Ramos KR, Chung WJ (2012a) High yield production of D-xylonic acid from D-xylose using engineered Escherichia coli. Bioresour Technol 115:244–248

    CAS  PubMed  Google Scholar 

  • Liu L, Zhu Y, Li J, Wang M, Lee P, Du G, Chen J (2012b) Microbial production of propionic acid from propionibacteria: current state, challenges and perspectives. Crit Rev Biotechnol 32:374–381

    CAS  PubMed  Google Scholar 

  • Liu L, Hossain GS, Shin HD, Li J, Du G, Chen J (2013a) One-step production of α-ketoglutaric acid from glutamic acid with an engineered l-amino acid deaminase from Proteus mirabilis. J Biotechnol 164:97–104

    CAS  PubMed  Google Scholar 

  • Liu X, Chi Z, Liu G, Madzak C, Chi Z (2013b) Both decrease in ACL1 gene expression and increase in ICL1 gene expression in marine-derived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin. Mar Biotechnol 15:26–36

    CAS  Google Scholar 

  • Liu G, Zhou Y, Luo H, Cheng X, Zhang R, Teng W (2015a) A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production. Bioresour Technol 198:87–93

    CAS  PubMed  Google Scholar 

  • Liu L, Zhuge X, Shin HD, Chen RR, Li J, Du G, Chen J, Schottel JL (2015b) Improved production of propionic acid in Propionibacterium jensenii via combinational overexpression of glycerol dehydrogenase and malate dehydrogenase from Klebsiella pneumoniae. Appl Environ Microbiol 81:2256–2264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Guan N, Zhu G, Li J, Shin HD, Du G, Chen J (2016) Pathway engineering of Propionibacterium jensenii for improved production of propionic acid. Sci Rep 6:19963

  • Liu J, Li J, Shin HD, Liu L, Du G, Chen J (2017) Protein and metabolic engineering for the production of organic acids. Bioresour Technol 239:412–421

    CAS  PubMed  Google Scholar 

  • Liu J, Li J, Liu Y, Shin HD, Ledesma-Amaro R, Du G, Chen J, Liu L (2018a) Synergistic rewiring of carbon metabolism and redox metabolism in cytoplasm and mitochondria of Aspergillus oryzae for increased l-malate production. ACS Synth Biol 7:2139–2147

    CAS  PubMed  Google Scholar 

  • Liu R, Liang L, Choudhury A, Bassalo MC, Gill RT (2018b) Iterative genome editing of Escherichia coli for 3-hydroxypropionic acid production. Metab Eng 47:303–313

    CAS  PubMed  Google Scholar 

  • Luo H, Yang R, Zhao Y, Wang Z, Liu Z, Huang M, Zeng Q (2018) Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. Bioresour Technol 253:343–354

    CAS  PubMed  Google Scholar 

  • Marinho GAS, Alvarado-Morales, Merlin Angelidaki I (2016) Valorization of macroalga Saccharina latissima as novel feedstock for fermentation-based succinic acid production in a biorefinery approach and economic aspects. Algal Res 16:102–109

    Google Scholar 

  • McCarthy S, Johnson T, Pavlik BJ, Payne S, Schackwitz W, Martin J, Lipzen A, Keffeler E, Blum P (2016) Expanding the limits of thermoacidophily in the archaeon Sulfolobus solfataricus by adaptive evolution. Appl Environ Microbiol 82:857–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nick W, Gennaro A, Peter SL, Matthias GS, Nuno PM, Punt PJ (2020) Metabolic specialization in itaconic acid production: a tale of two fungi. Curr Opin Biotechnol 62:153–159

    Google Scholar 

  • Niu P, Dong X, Wang Y, Liu L (2014) Enzymatic production of α-ketoglutaric acid from L-glutamic acid via L-glutamate oxidase. J Biotechnol 179:56–62

    CAS  PubMed  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Environ Microbiol 81:459–464

    CAS  Google Scholar 

  • Olajuyin AM, Yang M, Liu Y, Mu T, Tian J, Adaramoye OA, Xing J (2016) Efficient production of succinic acid from Palmaria palmata hydrolysate by metabolically engineered Escherichia coli. Bioresour Technol 214:653–659

    CAS  PubMed  Google Scholar 

  • Paludo N, Alves JS, Altmann C, Ayub MAZ, Fernandez-Lafuente R, Rodrigues RC (2015) The combined use of ultrasound and molecular sieves improves the synthesis of ethyl butyrate catalyzed by immobilized Thermomyces lanuginosus lipase. Ultrason Sonochem 22:89–94

    CAS  PubMed  Google Scholar 

  • Papadaki A, Papapostolou H, Alexandri M, Kopsahelis N, Papanikolaou S, De Castro AM, Freire DMG, Koutinas A (2018) Fumaric acid production using renewable resources from biodiesel and cane sugar production processes. Environ Sci Pollut Res 25:35960–35970

    CAS  Google Scholar 

  • Park SJ, Kim EY, Noh W, Park HM, Oh YH, Lee SH, Song BK, Jegal J, Lee SY (2013) Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab Eng 16:42–47

    CAS  Google Scholar 

  • Payne S, McCarthy S, Johnson T, North E, Blum P (2018) Nonmutational mechanism of inheritance in the Archaeon Sulfolobus solfataricus. Proc Natl Acad Sci 115:12271–12276

    CAS  PubMed  Google Scholar 

  • Pham HL, Wong A, Chua N, Teo WS, Yew WS, Chang MW (2017) Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes. Nat Commun 8:411

    PubMed  PubMed Central  Google Scholar 

  • Rajkumar AS, Liu G, Bergenholm D, Arsovska D, Kristensen M, Nielsen J, Jensen MK, Keasling JD (2016) Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Res 44:e136

    PubMed  PubMed Central  Google Scholar 

  • Rohles CM, Gläser L, Kohlstedt M, Gießelmann G, Pearson S, del Campo A, Becker J, Wittmann C (2018) A bio-based route to the carbon-5 chemical glutaric acid and to bionylon-6,5 using metabolically engineered Corynebacterium glutamicum. Green Chem 20:4662–4674

    CAS  Google Scholar 

  • Salvachúa D, Mohagheghi A, Smith H, Bradfield MFA, Nicol W, Black BAB, Biddy MJ, Dowe N, Beckham GT (2017) Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation. Biotechnol Biofuels 9:28

    Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2013) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108

    Google Scholar 

  • Sebastian J, Hegde K, Kumar P, Rouissi T, Brar SK (2019) Bioproduction of fumaric acid: an insight into microbial strain improvement strategies. Crit Rev Biotechnol 39:817–834

    CAS  PubMed  Google Scholar 

  • Singh OV, Kumar R (2007) Biotechnological production of gluconic acid: future implications. Appl Environ Microbiol 75:713–722

    CAS  Google Scholar 

  • Singh OV, Singh RP (2006) Bioconversion of grape must into modulated gluconic acid production by Aspergillus niger ORS-4.410. J Appl Microbiol 100:1114–1122

    CAS  PubMed  Google Scholar 

  • Snoek T, Chaberski EK, Ambri F, Kol S, Bjorn SP, Pang B, Barajas JF, Welner DH, Jensen MK, Keasling JD (2020) Evolution-guided engineering of small-molecule biosensors. Nucleic Acids Res 48:e3

    CAS  PubMed  Google Scholar 

  • Song C, Lee S (2015) Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid. Appl Microbiol Biotechnol 99:8455–8464

    CAS  PubMed  Google Scholar 

  • Song CW, Kim DI, Choi S, Jang JW, Lee SY (2013) Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol Bioeng 110:2025–2034

    CAS  PubMed  Google Scholar 

  • Sun D, Liu X, Zhu M, Chen Y, Li C, Cheng X, Zhu Z, Lu F, Qin HM (2019) Efficient biosynthesis of high-value succinic acid and 5-hydroxyleucine using a multienzyme cascade and whole-cell catalysis. J Agric Food Chem 67:12502–12510

    CAS  PubMed  Google Scholar 

  • Suo Y, Luo S, Zhang Y, Liao Z, Wang J (2017) Enhanced butyric acid tolerance and production by Class I heat shock protein-overproducing Clostridium tyrobutyricum ATCC 25755. J Ind Microbiol Biotechnol 44:1145–1156

    CAS  PubMed  Google Scholar 

  • Tang J, Zhu X, Lu J, Liu P, Xu H, Tan Z, Zhang X (2013) Recruiting alternative glucose utilization pathways for improving succinate production. Appl Microbiol Biotechnol 97:2513–2520

    CAS  PubMed  Google Scholar 

  • Toivari M, Vehkomaki ML, Nygard Y, Penttila M, Ruohonen L, Wiebe MG (2013) Low pH D-xylonate production with Pichia kudriavzevii. Bioresour Technol 133:555–562

    CAS  PubMed  Google Scholar 

  • Toivari M, Nygård Y, Kumpula EP, Vehkomäki ML, Benˇina M, Valkonen M, Maaheimo H, Andberg M, Koivula A, Ruohonen L, Penttilä M, Wiebe MG (2012) Metabolic engineering of Saccharomyces cerevisiae for bioconversion of D-xylose to D-xylonate. Metab Eng 14:427–436

  • Tsuge Y, Yamamoto S, Suda M, Inui M, Yukawa H (2013) Reactions upstream of glycerate-1,3-bisphosphate drive Corynebacterium glutamicum D-lactate productivity under oxygen deprivation. Appl Microbiol Biotechnol 97:6693–6703

    CAS  PubMed  Google Scholar 

  • Tsuge Y, Yamamoto S, Kato N, Suda M, Vertès AA, Yukawa H, Inui M (2015) Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of D-lactate in Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 99:4679–4689

    CAS  PubMed  Google Scholar 

  • van Maris AJ, Luttik MA, Winkler AA, van Dijken JP, Pronk JT (2003) Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 69:2094–2099

    PubMed  PubMed Central  Google Scholar 

  • van Maris A, Geertman JM, Vermeulen A, Groothuizen MK, Winkler AA, Piper MD, van Dijken JP, Pronk JT (2004) Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol 70:159–166

    PubMed  PubMed Central  Google Scholar 

  • Wang D, Thakker C, Liu P, Bennett GN, San KY (2015) Efficient production of free fatty acids from soybean meal carbohydrates. Biotechnol Bioeng 112:2324–2333

    CAS  PubMed  Google Scholar 

  • Wang D, Wang C, Wei D, Shi J, Kim CH, Jiang B, Han Z, Hao J (2016a) Gluconic acid production by gad mutant of Klebsiella pneumoniae. World J Microbiol Biotechnol 32:132

    PubMed  Google Scholar 

  • Wang J, Lin M, Xu M, Yang ST (2016b) Anaerobic fermentation for production of carboxylic acids as bulk chemicals from renewable biomass. Adv Biochem Eng Biotechnol 156:323–361

    CAS  PubMed  Google Scholar 

  • Wang J, Shen X, Lin Y, Chen Z, Yang Y, Yuan Q, Yan Y (2018) Investigation of the synergetic effect of xylose metabolic pathways on the production of glutaric acid. ACS Synth Biol 7:24–29

    CAS  PubMed  Google Scholar 

  • Wang G, Ozmerih S, Guerreiro R, Meireles AC, Carolas A, Milne N, Jensen MK, Ferreira BS, Borodina I (2020) Improvement of cis,cis-muconic acid production in Saccharomyces cerevisiae through biosensor-aided genome engineering. ACS Synth Biol 9:634–646

    CAS  PubMed  Google Scholar 

  • Wei P, Cheng C, Lin M, Zhou Y, Yang S (2017) Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: kinetics and process economics. Bioresour Technol 224:581–589

    CAS  PubMed  Google Scholar 

  • Wieschalka S, Blombach B, Bott M, Eikmanns BJ (2013) Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 6:87–102

    PubMed  Google Scholar 

  • Wittmann C, Becker J, Lange A, Fabarius J (2015) Top value platform chemicals: bio-based production of organic acids. Curr Opin Biotechnol 36:168–175

    PubMed  Google Scholar 

  • Xu K, Xu P (2014) Efficient production of L-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresour Technol 153:23–29

    CAS  PubMed  Google Scholar 

  • Xu G, Zou W, Chen X, Xu N, Liu L, Chen J (2012) Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering. PLoS One 7:e52086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Chen X, Liu L, Jiang L (2013) Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes. Bioresour Technol 148:91–96

    CAS  PubMed  Google Scholar 

  • Xu Y, Shan L, Zhou Y, Xie Z, Ball AS, Cao W, Liu H (2019) Development of a Cre-loxP-based genetic system in Aspergillus niger ATCC1015 and its application to construction of efficient organic acid-producing cell factories. Appl Microbiol Biotechnol 103:8105–8114

    CAS  PubMed  Google Scholar 

  • Xu Y, Zhao Z, Tong W, Ding Y, Liu B, Shi Y, Wang J, Sun S, Liu M, Wang Y, Qi Q, Xian M, Zhao G (2020a) An acid-tolerance response system protecting exponentially growing Escherichia coli. Nat Commun 11:1496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zhou Y, Cao W, Liu H (2020b) Improved production of malic acid in Aspergillus niger by abolishing citric acid accumulation and enhancing glycolytic flux. ACS Synth Biol 9:1418–1425

    CAS  PubMed  Google Scholar 

  • Yamane T, Tanaka R (2013) Highly accumulative production of L(+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae. J Biosci Bioeng 115:90–95

    CAS  PubMed  Google Scholar 

  • Yin X, Li J, Shin HD, Du G, Liu L, Chen J (2015) Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects. Biotechnol Adv 33:830–841

    CAS  PubMed  Google Scholar 

  • Yoshida S, Tanaka H, Hirayama M, Murata K, Kawai S (2015) Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae. Bioengineered 6:347–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Du G, Zhou J, Chen J (2012) Enhanced α-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by an improved integrated fed-batch strategy. Bioresour Technol 114:597–602

    CAS  PubMed  Google Scholar 

  • Yu JL, Xia XX, Zhong JJ, Qian ZG (2017) Enhanced production of C5 dicarboxylic acids by aerobic-anaerobic shift in fermentation of engineered Escherichia coli. Process Biochem 62:53–58

    CAS  Google Scholar 

  • Zambanini T, Hosseinpour Tehrani H, Geiser E, Sonntag CK, Buescher JM, Meurer G, Wierckx N, Blank LM (2017) Metabolic engineering of Ustilago trichophora TZ1 for improved malic acid production. Metab Eng Commun 4:12–21

    PubMed  PubMed Central  Google Scholar 

  • Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JMA, van Dijken JP, Pronk JT, van Maris AJA (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74:2766–2777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Yang ST (2009) Engineering Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation. Biotechnol Bioeng 104:766–773

    CAS  PubMed  Google Scholar 

  • Zhang B, Skory CD, Yang ST (2012) Metabolic engineering of Rhizopus oryzae : Effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose. Metab Eng 14:512–520

    CAS  PubMed  Google Scholar 

  • Zhang H, Zhang J, Bao J (2016) High titer gluconic acid fermentation by Aspergillus niger from dry dilute acid pretreated corn stover without detoxification. Bioresour Technol 203:211–219

    CAS  PubMed  Google Scholar 

  • Zhang Y, Yoshida M, Vadlani PV (2018) Biosynthesis of D-lactic acid from lignocellulosic biomass. Biotechnol Lett 40:1167–1179

    CAS  PubMed  Google Scholar 

  • Zhao M, Huang D, Zhang X, Koffas MAG, Deng Y (2018a) Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway. Metab Eng 47:254–262

    CAS  PubMed  Google Scholar 

  • Zhao M, Li G, Deng Y (2018b) Engineering Escherichia coli for glutarate production as the C5 platform backbone. Appl Environ Microbiol 84:e00814–e00818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Lu X, Zong H, Li J, Zhuge B (2018c) Itaconic acid production in microorganisms. Biotechnol Lett 40:455–464

    CAS  PubMed  Google Scholar 

  • Zheng P, Fang L, Xu Y, Dong J, Ni Y, Sun H (2010) Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Bioresour Technol 101:7889–7894

    CAS  PubMed  Google Scholar 

  • Zhou Y, Zhao M, Zhou S, Zhao Y, Li G, Deng Y (2020) Biosynthesis of adipic acid by a highly efficient induction-free system in Escherichia coli. J Biotechnol 314-315:8–13

    CAS  PubMed  Google Scholar 

  • Zhu Y, Eiteman MA, Altman R, Altman E (2008) High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain. Appl Environ Microbiol 74:6649–6655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuge X, Liu L, Shin H-D, Chen RR, Li J, Du G, Chen J (2013) Development of a Propionibacterium-Escherichia coli shuttle vector for metabolic engineering of Propionibacterium jensenii, an efficient producer of propionic acid. Appl Environ Microbiol 79:4595–4602

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (21676119, 31671845, 31871784, 31870069, 31930085) and the Key Research and Development Program of China (2018YFA0900300, 2018YFA0900504).

Author information

Authors and Affiliations

Authors

Contributions

Long Liu, Xueqin Lv, Jianghua Li and Guocheng Du conceived and designed the manuscript. Li Sun and Ziyang Huang provided and analyzed literature. LS wrote and revised the manuscript. Li Sun, Xueqin Lv, Yang Gu and Mengyue Gong revised the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Xueqin Lv or Long Liu.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Gong, M., Lv, X. et al. Current advance in biological production of short-chain organic acid. Appl Microbiol Biotechnol 104, 9109–9124 (2020). https://doi.org/10.1007/s00253-020-10917-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10917-0

Keywords

Navigation