Skip to main content
Log in

Dynamic Monitoring of Polymer Flooding Using Magnetic Resonance Imaging Technology

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Polymer flooding is a vital method for the enhanced oil recovery of heterogeneous formations after water flooding. However, few visualization approaches are available to conduct the online monitoring and the non-invasive evaluation of polymer flooding experiments in natural rock cores. In this study, online dynamic magnetic resonance imaging (MRI) and T2 distribution measurements were employed to monitor polymer flooding in a natural layered core using low-field MRI equipment. A modified spin echo (SE) imaging technique featuring half Fourier acquisition and a short echo time (3.5 ms) was used to achieve dynamic MRI images during flooding with a temporal resolution of 93 s. Moreover, online T2 distribution measurements by the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence were utilized to estimate the bulk remaining oil saturation to validate the MRI results. Furthermore, the spatial distribution of the displacement efficiency was obtained through MRI signal processing and was visualized via a pseudo-colour mapping technique. A statistical analysis was carried out to estimate the change in the mean of the spatial distribution of the displacement efficiency. The results show that an improvement in the oil recovery from the natural layered core by polymer flooding after water flooding can be intuitively observed by the proposed method. Our low-field MRI methods provide quantitative and revealing information that can be beneficial for flooding mechanism studies of enhanced oil recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.B. Needham, P.H. Doe, J. Pet. Technol. 39, 1503 (1987)

    Article  Google Scholar 

  2. L.W. Lake, Enhanced Oil Recovery (Prentice-Hall, Englewood Cliffs, 1989), pp. 314–345

    Google Scholar 

  3. D.M. Wang, J.C. Chen, Q.Y. Yang, W.C. Gong, Q. Li, Acta Pet. Sin. 21, 45 (2000)

    Google Scholar 

  4. D.M. Wang, J.C. Chen, J.Z. Wu, G. Wang, Acta Pet. Sin. 26, 74 (2005)

    Google Scholar 

  5. L.J. Zhang, X.A. Yue, J. Cent, South Univ. Technol. 15, 84 (2008)

    Article  Google Scholar 

  6. J. Mitchell, J. Staniland, R. Chassagne, K. Mogensen, S. Frank, E.J. Fordham, J. Pet. Sci. Eng. 108, 14 (2013)

    Article  Google Scholar 

  7. J. Mitchell, T.C. Chandrasekera, D.J. Holland, L.F. Gladden, E.J. Fordham, Phys. Rep. 526, 165 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. W.M. Wang, H.K. Guo, D.Q. Sun, S.Z. Zhang, Acta Pet. Sin. 18, 54 (1997)

    Google Scholar 

  9. N.P. Ramskill, I. Bush, A.J. Sederman, M.D. Mantle, M. Benning, B.C. Anger, M. Appel, L.F. Gladden, J. Magn. Reson. 270, 187 (2016)

    Article  ADS  Google Scholar 

  10. D.S. Baldygin, S.K. Nobes, Mitra. Ind. Eng. Chem. Res. 53, 13497 (2014)

    Article  Google Scholar 

  11. C. Straley, D. Rossini, H. Vinegar, P. Tutunjian, C. Morriss, Log Anal. 38, 84 (1997)

    Google Scholar 

  12. G.R. Coates, L.Z. Xiao, M.G. Primmer, NMR Logging Principles and Applications (Gulf Publishing Company, Houston, 2000)

    Google Scholar 

  13. K.J. Dunn, D.J. Bergman, G.A. LaTorraca, Nuclear Magnetic Resonance: Petrophysical and Logging Applications (Elsevier, Pergamon, New York, 2002)

    Google Scholar 

  14. J. Mitchell, E.J. Fordham, Rev. Sci. Instrum. 85, 111502 (2014)

    Article  ADS  Google Scholar 

  15. H.Y. Carr, E.M. Purcell, Phys. Rev. 94, 630 (1954)

    Article  ADS  Google Scholar 

  16. S. Meiboom, D. Gill, Rev. Sci. Instrum. 29, 688 (1958)

    Article  ADS  Google Scholar 

  17. M.D. Hürlimann, M. Flaum, L. Venkataramanan, C. Flaum, R. Freedman, G.J. Hirasaki, Magn. Reson. Imaging 21, 305 (2013)

    Article  Google Scholar 

  18. Y.Q. Song, L. Venkataramanan, M.D. Hürlimann, M. Flaum, P. Frulla, C. Straley, J. Magn. Reson. 154, 261 (2002)

    Article  ADS  Google Scholar 

  19. L. Venkataramanan, Y.Q. Song, M.D. Hürlimann, IEEE Trans. Signal Process. 50, 1017 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Mitchell, T.C. Chandrasekera, L.F. Gladden, Prog. Nucl. Magn. Reson. Spectrosc. 62, 34 (2012)

    Article  Google Scholar 

  21. A. Pop, I. Ardelean, Cem. Concr. Res. 77, 76 (2015)

    Article  Google Scholar 

  22. K.R. Brownstein, C.E. Tarr, Phys. Rev. A. 19, 2446 (1979)

    Article  ADS  Google Scholar 

  23. B. A. Baldwin, W. S. Yamanashi, SPE Reserv. Eng. 4, 207(1989)

    Article  Google Scholar 

  24. C.E. Muir, B.J. Balcom, Annu. Reports NMR Spectrosc. 77, 81 (2012)

    Article  Google Scholar 

  25. Q. Chen, F.R. Rack, B.J. Balcom, Geol. Soc. Spec. Publ. 267, 193 (2006)

    Article  ADS  Google Scholar 

  26. O.V. Petrov, B.J. Balcom, J Magn Reson. 212, 102 (2011)

    Article  ADS  Google Scholar 

  27. D. Xiao, B.J. Balcom, J Magn Reson. 220, 70 (2012)

    Article  ADS  Google Scholar 

  28. W.P. Weglarz, A. Krzyzak, M. Stefaniuk, Magn. Reson. Imaging 34, 492 (2016)

    Article  Google Scholar 

  29. M. Li, D. Xiao, L. Romero-Zerón, F. Marica, B. MacMillan, B.J. Balcom, J. Magn. Reson. 269, 13 (2016)

    Article  ADS  Google Scholar 

  30. L.A. Weisenberger, J.L. Koenig, Macromolecules 23, 2445 (1990)

    Article  ADS  Google Scholar 

  31. D.A. Feinberg, J.D. Hale, J.C. Watts, L. Kaufman, A. Mark, Radiology 161, 527 (1986)

    Article  Google Scholar 

  32. J.R. MacFall, N.J. Pelc, R.M. Vavrek, Magn. Reson. Imaging 6, 143 (1988)

    Article  Google Scholar 

  33. L. Zhou, C.D. Hansen, IEEE Trans. Vis. Comput. Graph. 22, 2051 (2016)

    Article  Google Scholar 

  34. J.P. Butler, J.A. Reeds, S.V. Dawson, SIAM J. Numer. Anal. 18, 381 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  35. J. Hou, Z. Li, S. Zhang, X. Cao, Q. Du, X. Song, Transp. Porous Media 79, 407 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of Natural Science Foundation of China (grant numbers 61531002); and the Science Foundation of China University of Petroleum-Beijing at Karamay (grant number No. RCYJ2016B-01-004).

Author information

Authors and Affiliations

Authors

Contributions

Hongxian Liu: Conceptualization, Methodology, Investigation, Writing-original draft. Yao Ding: Methodology, Investigation, Validation, Writing-original draft. Weimin Wang: Formal analysis, Project administration. Yingkang Ma: Writing—review & editing. Taotao Zhu: Writing—review & editing. Deming Ma: Validation.

Corresponding author

Correspondence to Weimin Wang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Ding, Y., Wang, W. et al. Dynamic Monitoring of Polymer Flooding Using Magnetic Resonance Imaging Technology. Appl Magn Reson 52, 117–133 (2021). https://doi.org/10.1007/s00723-020-01280-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01280-4

Navigation