Skip to main content
Log in

Sphingosylphosphorylcholine alleviates hypoxia-caused apoptosis in cardiac myofibroblasts via CaM/p38/STAT3 pathway

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Blockade of hypoxia-caused nonmyocytes apoptosis helps improve survival and mitigate ventricular remodeling and dysfunction during the chronic stage of myocardial infarction. But tools affecting nonmyocyte apoptosis are very rare. Sphingosylphosphorylcholine (SPC), a naturally occurring bioactive sphingolipid in plasma, was proved to protect cardiomyocyte against apoptosis in an ischemic model in our previous study. Here, we showed that SPC also inhibited hypoxia-induced apoptosis in myofibroblasts, an important type of nonmyocytes in the heart. Calmodulin (CaM) is an identified receptor of SPC. We clarified that SPC inhibited myofibroblast apoptosis through CaM as evidenced by decreased cleaved caspase 3, PARP1 and condensed nucleus. Furthermore, the employment of inhibitor and agonist of p38 and STAT3 suggests that SPC inhibits myofibroblast apoptosis by regulating the phosphorylation of p38 and STAT3, and they act as downstream of CaM. The present work may provide new evidence on the regulation of myofibroblasts apoptosis by SPC and a novel target for heart remodeling after hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Investig 123(1):92–100. https://doi.org/10.1172/JCI62874

    Article  CAS  PubMed  Google Scholar 

  2. Hayakawa K, Takemura G, Kanoh M, Li Y, Koda M, Kawase Y, Maruyama R, Okada H, Minatoguchi S, Fujiwara T, Fujiwara H (2003) Inhibition of granulation tissue cell apoptosis during the subacute stage of myocardial infarction improves cardiac remodeling and dysfunction at the chronic stage. Circulation 108(1):104–109. https://doi.org/10.1161/01.CIR.0000074225.62168.68

    Article  PubMed  Google Scholar 

  3. Mohler PJ, Hund TJ (2011) Role of CaMKII in cardiovascular health, disease, and arrhythmia. Heart rhythm 8(1):142–144. https://doi.org/10.1016/j.hrthm.2010.07.029

    Article  PubMed  Google Scholar 

  4. Anderson ME (2007) Multiple downstream proarrhythmic targets for calmodulin kinase II: moving beyond an ion channel-centric focus. Cardiovasc Res 73(4):657–666. https://doi.org/10.1016/j.cardiores.2006.12.009

    Article  CAS  PubMed  Google Scholar 

  5. Wong VKW, Qiu C, Xu SW, Law BYK, Zeng W, Wang H, Michelangeli F, Dias I, Qu YQ, Chan TW, Han Y, Zhang N, Mok SWF, Chen X, Yu L, Pan H, Hamdoun S, Efferth T, Yu WJ, Zhang W, Li Z, Xie Y, Luo R, Jiang Q, Liu L (2019) Ca(2+) signalling plays a role in celastrol-mediated suppression of synovial fibroblasts of rheumatoid arthritis patients and experimental arthritis in rats. Br J Pharmacol 176(16):2922–2944. https://doi.org/10.1111/bph.14718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O'Day DH, Huber RJ, Suarez A (2012) Extracellular calmodulin regulates growth and cAMP-mediated chemotaxis in Dictyostelium discoideum. Biochem Biophys Res Commun 425(4):750–754. https://doi.org/10.1016/j.bbrc.2012.07.147

    Article  CAS  PubMed  Google Scholar 

  7. Zhang YL, Han ZF, Sun YP (2016) Structure-based identification of CaMKIIalpha-interacting MUPP1 PDZ domains and rational design of peptide ligands to target such interaction in human fertilization. Amino Acids 48(6):1509–1521. https://doi.org/10.1007/s00726-016-2211-6

    Article  CAS  PubMed  Google Scholar 

  8. Kulkarni C, Lo M, Fraseur JG, Tirrell DA, Kinzer-Ursem TL (2015) Bioorthogonal chemoenzymatic functionalization of calmodulin for bioconjugation applications. Bioconjug Chem 26(10):2153–2160. https://doi.org/10.1021/acs.bioconjchem.5b00449

    Article  CAS  PubMed  Google Scholar 

  9. Boynton AL, Whitfield JF, MacManus JP (1980) Calmodulin stimulates DNA synthesis by rat liver cells. Biochem Biophys Res Commun 95(2):745–749. https://doi.org/10.1016/0006-291x(80)90849-9

    Article  CAS  PubMed  Google Scholar 

  10. Chen QQ, Zhang W, Chen XF, Bao YJ, Wang J, Zhu WZ (2012) Electrical field stimulation induces cardiac fibroblast proliferation through the calcineurin-NFAT pathway. Can J Physiol Pharmacol 90(12):1611–1622. https://doi.org/10.1139/y2012-133

    Article  CAS  PubMed  Google Scholar 

  11. Martin TP, Lawan A, Robinson E, Grieve DJ, Plevin R, Paul A, Currie S (2014) Adult cardiac fibroblast proliferation is modulated by calcium/calmodulin-dependent protein kinase II in normal and hypertrophied hearts. Pflugers Arch 466(2):319–330. https://doi.org/10.1007/s00424-013-1326-9

    Article  CAS  PubMed  Google Scholar 

  12. Zhang W, Chen DQ, Qi F, Wang J, Xiao WY, Zhu WZ (2010) Inhibition of calcium-calmodulin-dependent kinase II suppresses cardiac fibroblast proliferation and extracellular matrix secretion. J Cardiovasc Pharmacol 55(1):96–105. https://doi.org/10.1097/FJC.0b013e3181c9548b

    Article  CAS  PubMed  Google Scholar 

  13. Orlati S, Porcelli AM, Hrelia S, Lorenzini A, Rugolo M (1998) Intracellular calcium mobilization and phospholipid degradation in sphingosylphosphorylcholine-stimulated human airway epithelial cells. Biochem J 334(Pt 3):641–649. https://doi.org/10.1042/bj3340641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seufferlein T, Rozengurt E (1995) Sphingosylphosphorylcholine rapidly induces tyrosine phosphorylation of p125FAK and paxillin, rearrangement of the actin cytoskeleton and focal contact assembly: Requirement of p21rho in the signaling pathway. J Biol Chem 270(41):24343–24351. https://doi.org/10.1074/jbc.270.41.243430

    Article  CAS  PubMed  Google Scholar 

  15. Bunemann M, Liliom K, Brandts BK, Pott L, Tseng JL, Desiderio DM, Sun G, Miller D, Tigyi G (1996) A novel membrane receptor with high affinity for lysosphingomyelin and sphingosine 1-phosphate in atrial myocytes. EMBO J 15(20):5527–5534

    Article  CAS  Google Scholar 

  16. Jeon ES, Lee MJ, Sung SM, Kim JH (2007) Sphingosylphosphorylcholine induces apoptosis of endothelial cells through reactive oxygen species-mediated activation of ERK. J Cell Biochem 100(6):1536–1547. https://doi.org/10.1002/jcb.21141

    Article  CAS  PubMed  Google Scholar 

  17. Yue HW, Liu J, Liu PP, Li WJ, Chang F, Miao JY (1851) Zhao J (2015) Sphingosylphosphorylcholine protects cardiomyocytes against ischemic apoptosis via lipid raft/PTEN/Akt1/mTOR mediated autophagy. Biochim Biophys Acta 9:1186–1193. https://doi.org/10.1016/j.bbalip.2015.04.001

    Article  CAS  Google Scholar 

  18. Herzog C, Schmitz M, Levkau B, Herrgott I, Mersmann J, Larmann J, Johanning K, Winterhalter M, Chun J, Muller FU, Echtermeyer F, Hildebrand R, Theilmeier G (2010) Intravenous sphingosylphosphorylcholine protects ischemic and postischemic myocardial tissue in a mouse model of myocardial ischemia/reperfusion injury. Mediators Inflamm 2010:425191. https://doi.org/10.1155/2010/425191

    Article  CAS  PubMed  Google Scholar 

  19. Kovacs E, Liliom K (2008) Sphingosylphosphorylcholine as a novel calmodulin inhibitor. Biochem J 410(2):427–437. https://doi.org/10.1042/BJ20071019

    Article  CAS  PubMed  Google Scholar 

  20. Kovacs E, Toth J, Vertessy BG, Liliom K (2010) Dissociation of calmodulin-target peptide complexes by the lipid mediator sphingosylphosphorylcholine: implications in calcium signaling. J Biol Chem 285(3):1799–1808. https://doi.org/10.1074/jbc.M109.053116

    Article  CAS  PubMed  Google Scholar 

  21. Hilfiker-Kleiner D, Hilfiker A, Drexler H (2005) Many good reasons to have STAT3 in the heart. Pharmacol Ther 107(1):131–137. https://doi.org/10.1016/j.pharmthera.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  22. Liu J, Chang F, Li F, Fu H, Wang J, Zhang S, Zhao J, Yin D (2015) Palmitate promotes autophagy and apoptosis through ROS-dependent JNK and p38 MAPK. Biochem Biophys Res Commun 463(3):262–267. https://doi.org/10.1016/j.bbrc.2015.05.042

    Article  CAS  PubMed  Google Scholar 

  23. Liu PP, Liu HH, Sun SH, Shi XX, Yang WC, Su GH, Zhao J (2017) Aspirin alleviates cardiac fibrosis in mice by inhibiting autophagy. Acta Pharmacol Sin 38(4):488–497. https://doi.org/10.1038/aps.2016.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Soppert J, Kraemer S, Beckers C, Averdunk L, Mollmann J, Denecke B, Goetzenich A, Marx G, Bernhagen J, Stoppe C (2018) Soluble CD74 reroutes MIF/CXCR4/AKT-mediated survival of cardiac myofibroblasts to necroptosis. J Am Heart Assoc 7(17):e009384. https://doi.org/10.1161/JAHA.118.009384

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ge D, Yue HW, Liu HH, Zhao J (2018) Emerging roles of sphingosylphosphorylcholine in modulating cardiovascular functions and diseases. Acta Pharmacol Sin 39(12):1830–1836. https://doi.org/10.1038/s41401-018-0036-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng LW, Li Y, Ge D, Zhao BX, Liu YR, Lv HS, Ding J, Miao JY (2010) Synthesis of novel oxime-containing pyrazole derivatives and discovery of regulators for apoptosis and autophagy in A549 lung cancer cells. Bioorg Med Chem Lett 20(16):4766–4770. https://doi.org/10.1016/j.bmcl.2010.06.121

    Article  CAS  PubMed  Google Scholar 

  27. Jayawardena TM, Finch EA, Zhang L, Zhang H, Hodgkinson CP, Pratt RE, Rosenberg PB, Mirotsou M, Dzau VJ (2015) MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function. Circ Res 116(3):418–424. https://doi.org/10.1161/CIRCRESAHA.116.304510

    Article  CAS  PubMed  Google Scholar 

  28. Aksu B, Ayvaz S, Aksu F, Karaca T, Cemek M, Ayaz A, Demirtas S (2015) Effects of sphingosylphosphorylcholine against oxidative stress and acute lung injury induced by pulmonary contusion in rats. J Pediatr Surg 50(4):591–597. https://doi.org/10.1016/j.jpedsurg.2014.06.007

    Article  PubMed  Google Scholar 

  29. Zhao YT, Du J, Yano N, Wang H, Wang J, Dubielecka PM, Zhang LX, Qin G, Zhuang S, Liu PY, Chin YE, Zhao TC (2019) p38-Regulated/activated protein kinase plays a pivotal role in protecting heart against ischemia-reperfusion injury and preserving cardiac performance. Am J Physiol Cell Physiol 317(3):C525–C533. https://doi.org/10.1152/ajpcell.00122.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu J, Fu H, Chang F, Wang J, Zhang S, Caudle Y, Zhao J, Yin D (2016) Sodium orthovanadate suppresses palmitate-induced cardiomyocyte apoptosis by regulation of the JAK2/STAT3 signaling pathway. Apoptosis 21(5):546–557. https://doi.org/10.1007/s10495-016-1231-8

    Article  CAS  PubMed  Google Scholar 

  31. Mao J, Yang J, Zhang Y, Li T, Wang C, Xu L, Hu Q, Wang X, Jiang S, Nie X, Chen G (2016) Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway. Toxicol Appl Pharmacol 303:79–89

    Article  CAS  Google Scholar 

  32. Grazette LP, Rosenzweig A (2005) Role of apoptosis in heart failure. Heart Fail Clin 1(2):251–261. https://doi.org/10.1016/j.hfc.2005.03.007

    Article  PubMed  Google Scholar 

  33. Ge D, Jing Q, Meng N, Su L, Zhang Y, Zhang S, Miao J, Zhao J (2011) Regulation of apoptosis and autophagy by sphingosylphosphorylcholine in vascular endothelial cells. J Cell Physiol 226(11):2827–2833. https://doi.org/10.1002/jcp.22632

    Article  CAS  PubMed  Google Scholar 

  34. Ge D, Gao J, Han L, Li Y, Liu HH, Yang WC, Chang F, Liu J, Yu M, Zhao J (2019) Novel effects of sphingosylphosphorylcholine on the apoptosis of breast cancer via autophagy/AKT/p38 and JNK signaling. J Cell Physiol 234(7):11451–11462. https://doi.org/10.1002/jcp.27802

    Article  CAS  PubMed  Google Scholar 

  35. Yue H, Li W, Liu P, Gao J, Miao J, Zhao J (2014) Inhibition of autophagy promoted sphingosylphosphorylcholine induced cell death in non-small cell lung cancer cells. Biochem Biophys Res Commun 453(3):502–507. https://doi.org/10.1016/j.bbrc.2014.09.120

    Article  CAS  PubMed  Google Scholar 

  36. Quetglas S, Iborra C, Sasakawa N, De Haro L, Kumakura K, Sato K, Leveque C, Seagar M (2002) Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. EMBO J 21(15):3970–3979. https://doi.org/10.1093/emboj/cdf404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Federico M, Portiansky EL, Sommese L, Alvarado FJ, Blanco PG, Zanuzzi CN, Dedman J, Kaetzel M, Wehrens XHT, Mattiazzi A, Palomeque J (2017) Calcium-calmodulin-dependent protein kinase mediates the intracellular signalling pathways of cardiac apoptosis in mice with impaired glucose tolerance. J Physiol 595(12):4089–4108. https://doi.org/10.1113/JP273714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao F, Yue TL, Shi DW, Christopher TA, Lopez BL, Ohlstein EH, Barone FC, Ma XL (2002) p38 MAPK inhibition reduces myocardial reperfusion injury via inhibition of endothelial adhesion molecule expression and blockade of PMN accumulation. Cardiovasc Res 53(2):414–422. https://doi.org/10.1016/s0008-6363(01)00488-6

    Article  CAS  PubMed  Google Scholar 

  39. Lemke LE, Bloem LJ, Fouts R, Esterman M, Sandusky G, Vlahos CJ (2001) Decreased p38 MAPK activity in end-stage failing human myocardium: p38 MAPK alpha is the predominant isoform expressed in human heart. J Mol Cell Cardiol 33(8):1527–1540. https://doi.org/10.1006/jmcc.2001.1415

    Article  CAS  PubMed  Google Scholar 

  40. Liu YH, Wang D, Rhaleb NE, Yang XP, Xu J, Sankey SS, Rudolph AE, Carretero OA (2005) Inhibition of p38 mitogen-activated protein kinase protects the heart against cardiac remodeling in mice with heart failure resulting from myocardial infarction. J Cardiac Fail 11(1):74–81. https://doi.org/10.1016/j.cardfail.2004.04.004

    Article  CAS  Google Scholar 

  41. Mathieson FA, Nixon GF (2006) Sphingolipids differentially regulate mitogen-activated protein kinases and intracellular Ca2+ in vascular smooth muscle: effects on CREB activation. Br J Pharmacol 147(4):351–359

    Article  CAS  Google Scholar 

  42. Chu W, Li X, Li C, Wan L, Shi H, Song X, Liu X, Chen X, Zhang C, Shan H, Lu Y, Yang B (2011) TGFBR3, a potential negative regulator of TGF-beta signaling, protects cardiac fibroblasts from hypoxia-induced apoptosis. J Cell Physiol 226(10):2586–2594. https://doi.org/10.1002/jcp.22604

    Article  CAS  PubMed  Google Scholar 

  43. Fang G, Chen S, Huang Q, Chen L, Liao D (2018) Curcumin suppresses cardiac fibroblasts activities by regulating the proliferation and cell cycle via the inhibition of the p38 MAPK/ERK signaling pathway. Mol Med Rep 18(2):1433–1438. https://doi.org/10.3892/mmr.2018.9120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, Adams JL (2000) Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 47(2–3):185–201. https://doi.org/10.1016/s0162-3109(00)00206-x

    Article  CAS  PubMed  Google Scholar 

  45. Guanizo AC, Fernando CD, Garama DJ, Gough DJ (2018) STAT3: a multifaceted oncoprotein. Growth Factors 36(1–2):1–14. https://doi.org/10.1080/08977194.2018.1473393

    Article  CAS  PubMed  Google Scholar 

  46. Rajendran P, Li F, Shanmugam MK, Vali S, Abbasi T, Kapoor S, Ahn KS, Kumar AP, Sethi G (2012) Honokiol inhibits signal transducer and activator of transcription-3 signaling, proliferation, and survival of hepatocellular carcinoma cells via the protein tyrosine phosphatase SHP-1. J Cell Physiol 227(5):2184–2195. https://doi.org/10.1002/jcp.22954

    Article  CAS  PubMed  Google Scholar 

  47. Thilakasiri PS, Dmello RS, Nero TL, Parker MW, Ernst M, Chand AL (2019) Repurposing of drugs as STAT3 inhibitors for cancer therapy. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.09.022

    Article  PubMed  Google Scholar 

  48. Wong ALA, Hirpara JL, Pervaiz S, Eu JQ, Sethi G, Goh BC (2017) Do STAT3 inhibitors have potential in the future for cancer therapy? Expert Opin Investig Drugs 26(8):883–887. https://doi.org/10.1080/13543784.2017.1351941

    Article  CAS  PubMed  Google Scholar 

  49. Hulsurkar M, Quick AP, Wehrens XH (2018) STAT3: a link between CaMKII-betaIV-spectrin and maladaptive remodeling? J Clin Investig 128(12):5219–5221. https://doi.org/10.1172/JCI124778

    Article  PubMed  Google Scholar 

  50. Enomoto D, Obana M, Miyawaki A, Maeda M, Nakayama H, Fujio Y (2015) Cardiac-specific ablation of the STAT3 gene in the subacute phase of myocardial infarction exacerbated cardiac remodeling. Am J Physiol Heart Circ Physiol 309(3):H471–480. https://doi.org/10.1152/ajpheart.00730.2014

    Article  CAS  PubMed  Google Scholar 

  51. Tsai CT, Lin JL, Lai LP, Lin CS, Huang SK (2008) Membrane translocation of small GTPase Rac1 and activation of STAT1 and STAT3 in pacing-induced sustained atrial fibrillation. Heart rhythm 5(9):1285–1293. https://doi.org/10.1016/j.hrthm.2008.05.012

    Article  PubMed  Google Scholar 

  52. Kurdi M, Booz GW (2009) JAK redux: a second look at the regulation and role of JAKs in the heart. Am J Physiol Heart Circ Physiol 297(5):H1545–1556. https://doi.org/10.1152/ajpheart.00032.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Frias MA, James RW, Gerber-Wicht C, Lang U (2009) Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate. Cardiovasc Res 82(2):313–323. https://doi.org/10.1093/cvr/cvp024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 31671180, 81700217, and 81170087), the Provincial Natural Science Foundation of Shandong (Nos. ZR2018MH003 and ZR2016HB57) and the clinical medical science and technology innovation Program of Jinan (201805004, 201805059) and China Postdoctoral Science Foundation (2019M662370).

Author information

Authors and Affiliations

Authors

Contributions

JZ and WK designed the research and finally approved of the version to be published. YL analyzed the data and wrote the paper. QQ, WY, YY performed the research. CL analyzed the data. TZ revised the article.

Corresponding authors

Correspondence to Wei-hua Kong or Jing Zhao.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2020_1639_MOESM1_ESM.tif

Supplementary Fig. S1 Hypoxia induces apoptosis of neonatal mouse-derived cardiac myofibroblasts. (a) Cell morphology was observed by inverted phase contrast microscope after hypoxia exposure for 2, 4, 6, and 8 h, respectively. (b) Cell viability determined by SRB assay. (c) Levels of cleaved caspase 3 (c-caspase 3) and (d) cleaved PARP1 (c-PARP1) were determined by Western blotting after hypoxia stimulation for 0, 2, 4, 6, and 8 h, respectively. *P < 0.05,**P < 0.01,***P < 0.001, ****P < 0.0001. n=3. Supplementary file1 (TIF 2485 kb)

10495_2020_1639_MOESM2_ESM.tif

Supplementary Fig. S2 SPC inhibits the hypoxia-induced apoptosis of neonatal mouse-derived cardiac myofibroblasts. (a) Effects of SPC pretreatment on cell morphology exposed to hypoxia for 4 h. (b) Cell viability determined by SRB assay. (c) Relative protein level of c-caspase 3 was determined in neonatal mouse-derived cardiac myofibroblasts pretreated with SPC and followed by hypoxia treatment. ***P < 0.001, ****P < 0.0001. n =3. Supplementary file2 (TIF 2169 kb)

10495_2020_1639_MOESM3_ESM.tif

Supplementary Fig. S3 Pretreatment with the specific inhibitor of p38 or STAT3 inhibits the hypoxia-induced apoptosis of neonatal mouse-derived cardiac myofibroblasts. Effects of p38 inhibitor pretreatment on the relative protein levels of cleaved PARP1 (a-c). Effects of STAT3 inhibitor pretreatment on the relative protein levels of cleaved Caspase 3 (d-f). The group of ctr, DMSO, and SPC5 was subject to ethanol, DMSO, or SPC at 5 μM, respectively. *P < 0.05, ***P < 0.001. n =3. Supplementary file3 (TIF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Qi, Q., Yang, Wc. et al. Sphingosylphosphorylcholine alleviates hypoxia-caused apoptosis in cardiac myofibroblasts via CaM/p38/STAT3 pathway. Apoptosis 25, 853–863 (2020). https://doi.org/10.1007/s10495-020-01639-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-020-01639-9

Keywords

Navigation