Skip to main content
Log in

Validation of Wall Shear Stress Assessment in Non-invasive Coronary CTA versus Invasive Imaging: A Patient-Specific Computational Study

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Endothelial shear stress (ESS) identifies coronary plaques at high risk for progression and/or rupture leading to a future acute coronary syndrome. In this study an optimized methodology was developed to derive ESS, pressure drop and oscillatory shear index using computational fluid dynamics (CFD) in 3D models of coronary arteries derived from non-invasive coronary computed tomography angiography (CTA). These CTA-based ESS calculations were compared to the ESS calculations using the gold standard with fusion of invasive imaging and CTA. In 14 patients paired patient-specific CFD models based on invasive and non-invasive imaging of the left anterior descending (LAD) coronary arteries were created. Ten patients were used to optimize the methodology, and four patients to test this methodology. Time-averaged ESS (TAESS) was calculated for both coronary models applying patient-specific physiological data available at the time of imaging. For data analysis, each 3D reconstructed coronary artery was divided into 2 mm segments and each segment was subdivided into 8 arcs (45°).TAESS and other hemodynamic parameters were averaged per segment as well as per arc. Furthermore, the paired segment- and arc-averaged TAESS were categorized into patient-specific tertiles (low, medium and high). In the ten LADs, used for optimization of the methodology, we found high correlations between invasively-derived and non-invasively-derived TAESS averaged over segments (n = 263, r = 0.86) as well as arcs (n = 2104, r = 0.85, p < 0.001). The correlation was also strong in the four testing-patients with r = 0.95 (n = 117 segments, p = 0.001) and r = 0.93 (n = 936 arcs, p = 0.001).There was an overall high concordance of 78% of the three TAESS categories comparing both methodologies using the segment- and 76% for the arc-averages in the first ten patients. This concordance was lower in the four testing patients (64 and 64% in segment- and arc-averaged TAESS). Although the correlation and concordance were high for both patient groups, the absolute TAESS values averaged per segment and arc were overestimated using non-invasive vs. invasive imaging [testing patients: TAESS segment: 30.1(17.1–83.8) vs. 15.8(8.8–63.4) and TAESS arc: 29.4(16.2–74.7) vs 15.0(8.9–57.4) p < 0.001]. We showed that our methodology can accurately assess the TAESS distribution non-invasively from CTA and demonstrated a good correlation with TAESS calculated using IVUS/OCT 3D reconstructed models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Barbato, E., G. G. Toth, N. P. Johnson, N. H. J. Pijls, W. F. Fearon, P. A. L. Tonino, N. Curzen, Z. Piroth, G. Rioufol, P. Jüni, and B. De Bruyne. A prospective natural history study of coronary atherosclerosis using fractional flow reserve. J. Am. Coll. Cardiol. 68:2247–2255, 2016.

    Article  Google Scholar 

  2. Bech, G. J. W., B. De Bruyne, N. H. J. Pijls, E. D. De Muinck, J. C. A. Hoorntje, J. Escaned, P. R. Stella, E. Boersma, J. Bartunek, J. J. Koolen, and W. Wijns. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation 103:2928–2934, 2001.

    Article  CAS  Google Scholar 

  3. Benjamin, E. J., M. J. Blaha, S. E. Chiuve, and M. Cushman. Heart Disease and Stroke Statistics—2017 Update. 2017, 146–603 pp.

  4. Berger, S. A., E. W. Goldsmith, and E. R. Lewis. Introduction to Bioengineering. Oxford: Oxford University Press, 2000.

    Google Scholar 

  5. Bernardini, F., J. Mittleman, H. Rushmeier, C. Silva, and G. Tuabin. The Ball-Pivoting algorithm for surface reconsturction. IEEE Trans. Vis. Comput. Graph. 5:349–359, 1999.

    Article  Google Scholar 

  6. Bezerra, H. G., M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon. Intracoronary optical coherence tomography: a comprehensive review: clinical and research applications. JACC Cardiovasc Interv. 2:1035–1046, 2009.

    Article  Google Scholar 

  7. Bourantas, C. V., L. Räber, A. Sakellarios, Y. Ueki, T. Zanchin, K. C. Koskinas, K. Yamaji, M. Taniwaki, D. Heg, M. D. Radu, M. I. Papafaklis, F. Kalatzis, K. K. Naka, D. I. Fotiadis, A. Mathur, P. W. Serruys, L. K. Michalis, H. M. Garcia-Garcia, A. Karagiannis, and S. Windecker. Utility of multimodality intravascular imaging and the local hemodynamic forces to predict atherosclerotic disease progression. JACC Cardiovasc. Imaging 2019. https://doi.org/10.1016/j.jcmg.2019.02.026.

    Article  PubMed  Google Scholar 

  8. Bulant, C. A., P. J. Blanco, G. D. Maso-Talou, C. G. Bezerra, P. A. Lemos, and R. A. Feijóo. A head-to-head comparison between CT- and IVUS-derived coronary blood flow models. J. Biomech. 51:65–76, 2017.

    Article  CAS  Google Scholar 

  9. Burattini, R., P. Sipkema, G. A. van Huis, and N. Westerhof. Identification of canine coronary resistance and intramyocardial compliance on the basis of the waterfall model. Ann. Biomed. Eng. 13:385–404, 1985.

    Article  CAS  Google Scholar 

  10. Chatzizisis, Y. S., M. Jonas, R. Beigel, A. U. Coskun, A. B. Baker, B. V. Stone, C. Maynard, R. G. Gerrity, W. Daley, E. R. Edelman, C. L. Feldman, and P. H. Stone. Attenuation of inflammation and expansive remodeling by Valsartan alone or in combination with Simvastatin in high-risk coronary atherosclerotic plaques. Atherosclerosis 203:387–394, 2009.

    Article  CAS  Google Scholar 

  11. Chatzizisis, Y. S., M. Jonas, A. U. Coskun, R. Beigel, B. V. Stone, C. Maynard, R. G. Gerrity, W. Daley, C. Rogers, E. R. Edelman, C. L. Feldman, and P. H. Stone. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress-an intravascular ultrasound and histopathology natural history study. Circulation 117:993–1002, 2008.

    Article  Google Scholar 

  12. Choi, G., J. M. Lee, H. J. Kim, J. B. Park, S. Sankaran, H. Otake, J. H. Doh, C. W. Nam, E. S. Shin, C. A. Taylor, and B. K. Koo. Coronary artery axial plaque stress and its relationship with lesion geometry application of computational fluid dynamics to coronary CT angiography. JACC Cardiovasc. Imaging 8:1156–1166, 2015.

    Article  Google Scholar 

  13. Collet, C., B. Chevalier, A. Cequier, J. Fajadet, M. Dominici, S. Helqvist, A. J. Van Boven, D. Dudek, D. McClean, M. Almeida, J. J. Piek, E. Tenekecioglu, A. Bartorelli, S. Windecker, P. W. Serruys, and Y. Onuma. Diagnostic accuracy of coronary CT angiography for the evaluation of bioresorbable vascular scaffolds. JACC Cardiovasc. Imaging 11:722–732, 2018.

    Article  Google Scholar 

  14. Costopoulos, C., L. H. Timmins, Y. Huang, O. Y. Hung, D. S. Molony, A. J. Brown, E. L. Davis, Z. Teng, J. H. Gillard, H. Samady, and M. R. Bennett. Impact of combined plaque structural stress and wall shear stress on coronary plaque progression, regression, and changes in composition. Eur. Heart J. 2019. https://doi.org/10.1093/eurheartj/ehz132.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Doh, J. H., B. K. Koo, C. W. Nam, J. H. Kim, J. K. Min, R. Nakazato, T. Silalahi, H. Prawira, H. Choi, S. Y. Lee, J. Namgung, S. U. Kwon, J. J. Kwak, and W. R. Lee. Diagnostic value of coronary CT angiography in comparison with invasive coronary angiography and intravascular ultrasound in patients with intermediate coronary artery stenosis: results from the prospective multicentre FIGURE-OUT (Functional Imaging crite. Eur. Heart J. Cardiovasc. Imaging 15:870–877, 2014.

    Article  Google Scholar 

  16. Eshtehardi, P., M. C. McDaniel, J. Suo, S. S. Dhawan, L. H. Timmins, J. N. G. Binongo, L. J. Golub, M. T. Corban, A. V. Finn, J. N. Oshinski, A. A. Quyyumi, D. P. Giddens, and H. Samady. Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease. J. Am. Heart Assoc. 1:e002543–e002543, 2012.

    Article  Google Scholar 

  17. Eslami, P., J. Tran, Z. Jin, J. Karady, R. Sotoodeh, M. T. Lu, U. Hoffmann, and A. Marsden. Effect of wall elasticity on hemodynamics and wall shear stress in patient-specific simulations in the coronary arteries. J. Biomech. Eng. 2019. https://doi.org/10.1115/1.4043722.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Esmaily-Moghadam, M., Y. Bazilevs, and A. L. Marsden. A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput. Mech. 52:1141–1152, 2013.

    Article  Google Scholar 

  19. Giannopoulos, A. A., C. S. Yiannis, P. Maurovich-Horvat, A. P. Antoniadis, U. Hoffmann, M. L. Steigner, F. J. Rybicki, and M. Dimitrios. Quantifying the effect of side branches in endothelial shear stress estimates. Atherosclerosis 30:873–882, 2016.

    Google Scholar 

  20. Van Der Giessen, A. G., M. Schaap, F. J. H. Gijsen, H. C. Groen, T. Van Walsum, N. R. Mollet, J. Dijkstra, F. N. Van De Vosse, W. J. Niessen, P. J. De Feyter, A. F. W. Van Der Steen, and J. J. Wentzel. 3D fusion of intravascular ultrasound and coronary computed tomography for in-vivo wall shear stress analysis: a feasibility study. Int. J. Cardiovasc. Imaging 26:781–796, 2010.

    Article  Google Scholar 

  21. Gijsen, F., Y. Katagiri, P. Barlis, C. Bourantas, C. Collet, U. Coskun, J. Daemen, J. Dijkstra, E. Edelman, P. Evans, K. Van Der Heiden, R. Hose, B. K. Koo, R. Krams, A. Marsden, F. Migliavacca, Y. Onuma, A. Ooi, E. Poon, H. Samady, P. Stone, K. Takahashi, D. Tang, V. Thondapu, E. Tenekecioglu, L. Timmins, R. Torii, J. Wentzel, and P. Serruys. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur. Heart J. 40:3421–3433, 2019.

    Article  Google Scholar 

  22. Han, D., A. Starikov, B. Hartaigh, H. Gransar, K. K. Kolli, J. H. Lee, A. Rizvi, L. Baskaran, J. Schulman-Marcus, F. Y. Lin, and J. K. Min. Relationship between endothelial wall shear stress and high-risk atherosclerotic plaque characteristics for identification of coronary lesions that cause ischemia: a direct comparison with fractional flow reserve. J. Am. Heart Assoc. 5:1–9, 2016.

    Google Scholar 

  23. Holland, P. W., and R. E. Welsch. Robust regression using iteratively reweighted least-squares. Commun. Stat. Theory Methods 6:813–827, 1977.

    Article  Google Scholar 

  24. Hoogendoorn, A., A. M. Kok, E. M. J. Hartman, G. de Nisco, L. Casadonte, C. Chiastra, A. Coenen, S.-A. Korteland, K. Van der Heiden, F. J. H. Gijsen, D. J. Duncker, A. F. W. van der Steen, and J. J. Wentzel. Multidirectional wall shear stress promotes advanced coronary plaque development: comparing five shear stress metrics. Res Cardiovasc 2019. https://doi.org/10.1093/cvr/cvz212.

    Article  Google Scholar 

  25. Johnson, K., P. Sharma, and J. Oshinski. Coronary artery flow measurement using navigator echo gated phase contrast magnetic resonance velocity mapping at 3.0 T. J. Biomech. Eng. 41:595–602, 2008.

    Article  Google Scholar 

  26. Kim, H. J., I. E. Vignon-Clementel, J. S. Coogan, C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 38:3195–3209, 2010.

    Article  CAS  Google Scholar 

  27. Koskinas, K., Y. S. Chatzizisis, M. I. Papafaklis, A. U. Coskun, A. B. Baker, P. Jarolim, A. P. Antoniadis, E. R. Edelman, P. H. Stone, and C. L. Feldman. Synergistic effect of local endothelial shear stress and systemic hypercholesterolemia on coronary atherosclerotic plaque progression and composition in pigs konstantinos 119:5124–5136, 2010.

    Google Scholar 

  28. Kumar, A., O. Y. Hung, M. Piccinelli, P. Eshtehardi, M. T. Corban, D. Sternheim, B. Yang, A. Lefieux, D. S. Molony, E. W. Thompson, W. Zeng, Y. Bouchi, S. Gupta, H. Hosseini, M. Raad, Y.-A. Ko, C. Liu, M. C. McDaniel, B. D. Gogas, J. S. Douglas, A. A. Quyyumi, D. P. Giddens, A. Veneziani, and H. Samady. Low coronary wall shear stress is associated with severe endothelial dysfunction in patients with nonobstructive coronary artery disease. JACC Cardiovasc. Interv. 11:2072–2080, 2018.

    Article  Google Scholar 

  29. Kumar, A., E. W. Thompson, A. Lefieux, D. S. Molony, E. L. Davis, N. Chand, S. Fournier, H. S. Lee, J. Suh, K. Sato, Y. A. Ko, D. Molloy, K. Chandran, H. Hosseini, S. Gupta, A. Milkas, B. Gogas, H. J. Chang, J. K. Min, W. F. Fearon, A. Veneziani, D. P. Giddens, S. B. King, B. De Bruyne, and H. Samady. High coronary shear stress in patients with coronary artery disease predicts myocardial infarction. J. Am. Coll. Cardiol. 72:1926–1935, 2018.

    Article  Google Scholar 

  30. Lee, J. M., G. Choi, B. K. Koo, D. Hwang, J. Park, J. Zhang, K. J. Kim, Y. Tong, H. J. Kim, L. Grady, J. H. Doh, C. W. Nam, E. S. Shin, Y. S. Cho, S. Y. Choi, E. J. Chun, J. H. Choi, B. L. Nørgaard, E. H. Christiansen, K. Niemen, H. Otake, M. Penicka, B. de Bruyne, T. Kubo, T. Akasaka, J. Narula, P. S. Douglas, C. A. Taylor, and H. S. Kim. Identification of high-risk plaques destined to cause acute coronary syndrome using coronary computed tomographic angiography and computational fluid dynamics. JACC Cardiovasc. Imaging 12:1032–1043, 2019.

    Article  Google Scholar 

  31. Lu, M. T., M. Ferencik, R. S. Roberts, K. L. Lee, A. Ivanov, E. Adami, D. B. Mark, F. A. Jaffer, J. A. Leipsic, P. S. Douglas, and U. Hoffmann. Noninvasive FFR derived from coronary CT angiography. Management and outcomes in the PROMISE trial. JACC Cardiovasc: Imaging, 2016. https://doi.org/10.1016/j.jcmg.2016.11.024.

    Book  Google Scholar 

  32. Nakazato, R., H. B. Park, D. S. Berman, H. Gransar, B. K. Koo, A. Erglis, F. Y. Lin, A. M. Dunning, M. J. Budoff, J. Malpeso, J. Leipsic, and J. K. Min. Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity results from the DeFACTO study. Circ. Cardiovasc. Imaging 6:881–889, 2013.

    Article  Google Scholar 

  33. Papafaklis, M. I., S. Takahashi, A. P. Antoniadis, A. U. Coskun, M. Tsuda, S. Mizuno, I. Andreou, S. Nakamura, Y. Makita, A. Hirohata, S. Saito, C. L. Feldman, and P. H. Stone. Effect of the local hemodynamic environment on the de novo development and progression of eccentric coronary atherosclerosis in humans: Insights from PREDICTION. Atherosclerosis 240:205–211, 2015.

    Article  CAS  Google Scholar 

  34. Parikh, N. I., P. Gona, M. G. Larson, C. S. Fox, R. S. Vasan, and D. Levy. Long-term trends in myocardial infarction incidence and case-fatality in the national heart, lung, and blood institute’s Framingham heart study. Circulation 119:1203–1210, 2010.

    Article  Google Scholar 

  35. Samady, H., P. Eshtehardi, M. C. McDaniel, J. Suo, S. S. Dhawan, C. Maynard, L. H. Timmins, A. A. Quyyumi, and D. P. Giddens. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124:779–788, 2011.

    Article  CAS  Google Scholar 

  36. Si, H. TetGen, a quality tetrahedral mesh generator. AMC Trans. Math. Softw. 41:11, 2015.

    Google Scholar 

  37. Stone, P. H., A. U. Coskun, S. Kinlay, M. E. Clark, M. Sonka, A. Wahle, O. J. Ilegbusi, Y. Yeghiazarians, J. J. Popma, J. Orav, R. E. Kuntz, and C. L. Feldman. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: In vivo 6-month follow-up study. Circulation 108:438–444, 2003.

    Article  Google Scholar 

  38. Stone, P. H., A. Maehara, A. U. Coskun, C. C. Maynard, M. Zaromytidou, G. Siasos, I. Andreou, D. Fotiadis, K. Stefanou, M. Papafaklis, L. Michalis, A. J. Lansky, G. S. Mintz, P. W. Serruys, C. L. Feldman, and G. W. Stone. Role of low endothelial shear stress and plaque characteristics in the prediction of nonculprit major adverse cardiac events: the PROSPECT study. JACC Cardiovasc. Imaging 11:462–471, 2018.

    Article  Google Scholar 

  39. Stone, P. H., S. Saito, S. Takahashi, Y. Makita, S. Nakamura, T. Kawasaki, A. Takahashi, T. Katsuki, S. Nakamura, A. Namiki, A. Hirohata, T. Matsumura, S. Yamazaki, H. Yokoi, S. Tanaka, S. Otsuji, F. Yoshimachi, J. Honye, D. Harwood, M. Reitman, A. U. Coskun, M. I. Papafaklis, and C. L. Feldman. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION study. Circulation 126:172–181, 2012.

    Article  Google Scholar 

  40. Tran, J. S., D. E. Schiavazzi, A. M. Kahn, and A. L. Marsden. Uncertainty quantification of simulated biomechanical stimuli in coronary artery bypass grafts. Comput. Methods Appl. Mech. Eng. 345:402–428, 2019.

    Article  Google Scholar 

  41. Updegrove, A., N. M. Wilson, J. Merkow, H. Lan, A. L. Marsden, and S. C. Shadden. SimVascular: an open source pipeline for cardiovascular simulation. Ann. Biomed. Eng. 45:525–541, 2017.

    Article  Google Scholar 

  42. Van Soest, G., E. Regar, T. P. M. Goderie, N. Gonzalo, S. Koljenovi, G. J. L. H. Van Leenders, P. W. Serruys, and A. F. W. Van Der Steen. Pitfalls in plaque characterization by OCT: image artifacts in native coronary arteries. JACC Cardiovasc. Imaging 4:810–813, 2011.

    Article  Google Scholar 

  43. Vergallo, R., M. I. Papafaklis, T. Yonetsu, C. V. Bourantas, I. Andreou, Z. Wang, J. G. Fujimoto, I. McNulty, H. Lee, L. M. Biasucci, F. Crea, C. L. Feldman, L. K. Michalis, P. H. Stone, and I. K. Jang. Endothelial shear stress and coronary plaque characteristics in humans combined frequency-domain optical coherence tomography and computational fluid dynamics study. Circ. Cardiovasc. Imaging 7:905–911, 2014.

    Article  Google Scholar 

  44. Veselka, J., P. Cadova, P. Tomasov, A. Theodor, and D. Zemanek. Dual-source CT angiography for detection and quantification of in-stent restenosis in the left main coronary artery: comparison with intracoronary ultrasound and coronary angiography. J. Invasive Cardiol. 23:460–464, 2011.

    PubMed  Google Scholar 

  45. Wilson, N. M., A. K. Ortiz, and A. B. Johnson. The vascular model repository: a public resource of medical imaging data and blood flow simulation results. J. Med. Dev. 7:040923, 2013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parastou Eslami.

Additional information

Associate Editor Lakshmi Prasad Dasi oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13064 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami, P., Hartman, E.M.J., Albaghadai, M. et al. Validation of Wall Shear Stress Assessment in Non-invasive Coronary CTA versus Invasive Imaging: A Patient-Specific Computational Study. Ann Biomed Eng 49, 1151–1168 (2021). https://doi.org/10.1007/s10439-020-02631-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02631-9

Keywords

Navigation