Skip to main content
Log in

Nanofomulation of zinc oxide and chitosan zinc sustain oxidative stress and alter secondary metabolite profile in tobacco

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Advancement in nanotechnology has improved ways for large-scale production and characterization of nanoparticles of physiologically important metals. The current study explores the impact of Zinc Oxide Nanoparticles (ZnO-NP) and Chitosan-Zinc oxide nano-bioformulation (CH-ZnO) in tissue culture raised callus of Nicotiana benthamiana. Results indicated augmented biomass in CH-ZnO treated callus, while a reduced biomass was observed in ZnO-NP treated callus, at all the concentrations tested. Higher chlorophyll and carotenoid content were recorded in callus treated with 800 ppm CH-ZnO as compared to ZnO-NP treated callus. A higher accumulation of proline was observed in CH-ZnO treated callus when compared to ZnO-NP treatment, which was significantly higher at 50, 200 and 400 ppm CH-ZnO treatment. A maximum reduction in malondialdehyde (MDA) content was recorded at 800 ppm, for both the nano-formulations tested. Likewise, a significant reduction in the H2O2 levels was observed in all the treatments, while the callus treated with 400 ppm ZnO-NP and 800 ppm CH-ZnO recorded the highest reduction. Phenylalanine Ammonia-Lyase (PAL), activity increased significantly in callus treated with 400 ppm concentration for both ZnO-NP and CH-ZnO with respect to control. An increased level of tannin and nicotine were recorded in callus supplemented with 50, 200 and 400 ppm CH-ZnO. Notably, a significant decline of 94 and 52% in tannin content and 25 and 50% in nicotine content was recorded in the callus treated with 800 ppm CH-ZnO and ZnO-NP, respectively. The findings of this study suggest that an optimized dosage of these nano-bioformulations could be utilized to regulate the nicotine content and stress tolerance level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Subba Rao A (2015) Characterization of zinc oxide nano particles and their effect on growth of maize (Zea mays L.) plant. J Plant Nutr 38(10):1505–1515. https://doi.org/10.1080/01904167.2014.992536

    Article  CAS  Google Scholar 

  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00613

    Article  PubMed  PubMed Central  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731. https://doi.org/10.4161/psb.6.11.17613

    Article  CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24(12):1337–1344

    CAS  Google Scholar 

  • Al-Tamrah SA (1999) Spectrophotometric determination of nicotine. Anal Chim Acta 379(1–2):75–80

    CAS  Google Scholar 

  • Arnon D (1949) Estimation of total chlorophyll. Plant Physiol 24(1):1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Austin, P. R. (1976). US Patent; Chitin as an Extender and Filter for Tobacco. College of Marine Studies, University of Delaware.

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Biol 45(1):369–392

    CAS  Google Scholar 

  • Baldwin, I. T. (1996). Methyl jasmonate-induced nicotine production in Nicotiana attenuata: inducing defenses in the field without wounding. In Proceedings of the 9th International Symposium on Insect-Plant Relationships (pp. 213–220). Springer, Dordrecht.

  • Baldwin IT, Schmelz EA, Ohnmeiss TE (1994) Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis inNicotiana sylvestris spegazzini and comes. J Chem Ecol 20(8):2139–2157

    CAS  PubMed  Google Scholar 

  • Bartley GE (1995) Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell Online 7(7):1027–1038. https://doi.org/10.1105/tpc.7.7.1027

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    CAS  Google Scholar 

  • Baybordi A (2006) Zinc in soils and crop nutrition. Parivar Press, Tehran, p 179

    Google Scholar 

  • Behboudi F, Tahmasebi-Sarvestani Z, Kassaee MZ, Modarres-Sanavy SAM, Sorooshzadeh A, Mokhtassi-Bidgoli A (2019) Evaluation of chitosan nanoparticles effects with two application methods on wheat under drought stress. J Plant Nutr 42(13):1439–1451

    CAS  Google Scholar 

  • Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Corporation, Mineola, NewYork

    Google Scholar 

  • Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011) Toxicity of ZnO and TiO2 Nanoparticles on Germinating Rice Seed Oryza sativa L. Int J Biosci Biochem Bioinformatics 1(4):282

    Google Scholar 

  • Brillouet JM, Romieu C, Schoefs B, Solymosi K, Cheynier V, Fulcrand H, Verdeil JL, Conéjéro G (2013) The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta. Ann Bot 112(6):1003–1014. https://doi.org/10.1093/aob/mct168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown PH, Cakmak I, Zhang Q (1993) Form and function of zinc plants. Zinc Soils Plants. https://doi.org/10.1007/978-94-011-0878-2_7

    Article  Google Scholar 

  • Brueske CH (1980) Phenylalanine ammonia lyase activity in tomato roots infected and resistant to the root-knot nematode Meloidogyne incognita. Physiol Plant Pathol 16(3):409–414

    CAS  Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95(4):605–612. https://doi.org/10.1080/02772248.2013.803796

    Article  CAS  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    CAS  PubMed  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302(1–2):1–17

    CAS  Google Scholar 

  • Carter GA, Jones JH, Mitchell RJ, Brewer CH (1996) Detection of solar-excited chlorophyll a fluorescence and leaf photosynthetic capacity using a Fraunhofer line radiometer. Remote Sens Environ 55(1):89–92

    Google Scholar 

  • Chen J, Liu X, Wang C, Yin SS, Li XL, Hu WJ, Simon M, Shen ZJ, Xiao Q, Chu CC, Peng XX (2015) Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J Hazard Mater 297:173–182

    CAS  PubMed  Google Scholar 

  • Chibu H, Shibayama H (2001) Effects of chitosan applications on the growth of several crops. In: Uragami T, Kurita K, Fukamizo T (eds) Chitin and chitosan in life science. Kodansha Scientific limited, Tokyo, pp 235–239

    Google Scholar 

  • Chintapakorn Y, Hamill JD (2003) Antisense-mediated down-regulation of putrescine N-methyltransferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine. Plant Mol Biol 53(1–2):87–105

    CAS  PubMed  Google Scholar 

  • Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V (2019) Zinc encapsulated chitosan nanoparticle to promote maize crop yield. Int J Biol Macromol 127:126–135

    CAS  PubMed  Google Scholar 

  • Cornelis G, Hund-Rinke K, Kuhlbusch T, Van den Brink N, Nickel C (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44(24):2720–2764

    CAS  Google Scholar 

  • De Sutter V, Vanderhaeghen R, Tilleman S, Lammertyn F, Vanhoutte I, Karimi M, Inzé D, Goossens A, Hilson P (2005) Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant J 44(6):1065–1076

    PubMed  Google Scholar 

  • De Tullio MC, Liso R, Arrigoni O (2004) Ascorbic acid oxidase: an enzyme in search of a role. Biol Plant 48(2):161–166. https://doi.org/10.1023/b:biop.0000033439.34635.a6

    Article  Google Scholar 

  • Dhillon GS, Kaur S, Brar SK (2014) Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity. Int Nano Lett 4(2):107

    Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7(7):1085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dzung NA (2005) Application of chitin, chitosan and their derivatives for agriculture in Vietnam. J Chitin Chitosan 10(3):109–113

    Google Scholar 

  • Dzung, N. A., & Thang, N. T. (2004). Effect of chitooligosaccharides on the growth and development of peanut (Arachis hypogea L.). In Proceedings of the Sixth Asia-Pacific on Chitin, Chitosan Symposium.(ed.) Khor, E., Hutmacher, D., and Yong, LL Singapore, isbn (pp. 981–05).

  • El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Marine Drugs 8(4):968–987. https://doi.org/10.3390/md8040968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felemban A, Braguy J, Zurbriggen MD, Al-babili S (2019) Apocarotenoids involved in plant development and stress response. Front Plant Sci 10:1168. https://doi.org/10.3389/fpls.2019.01168

    Article  PubMed  PubMed Central  Google Scholar 

  • García-López JI, Niño-Medina G, Olivares-Sáenz E, Lira-Saldivar RH, Barriga-Castro ED, Vázquez-Alvarado R, Rodríguez-Salinas PA, Zavala-García F (2019) Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 8(8):254

    PubMed Central  Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168(1):17–20. https://doi.org/10.1083/jcb.200409170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803. https://doi.org/10.1016/j.biotechadv.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Mitra S, Paul A (2015) Physiochemical studies of sodium chloride on mungbean (Vigna radiata L. Wilczek) and its possible recovery with spermine and gibberellic acid. Sci World J 2015:1–8. https://doi.org/10.1155/2015/858016

    Article  CAS  Google Scholar 

  • Guan YJ, Hu J, Wang XJ, Shao CX (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10(6):427–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanigan D, Truong L, Schoepf J, Nosaka T, Mulchandani A, Tanguay R, Westerhoff P (2018) Trade-offs in ecosystem impacts from nanomaterial versus organic chemical ultraviolet filters in sunscreens. Water Res 139:281–290

    CAS  PubMed  Google Scholar 

  • Hashemi S, Asrar Z, Pourseyedi S, Nadernejad N (2016) Plant-mediated synthesis of zinc oxide nano-particles and their effect on growth, lipid peroxidation and hydrogen peroxide contents in soybean. Indian J Plant Physiol 21(3):312–317. https://doi.org/10.1007/s40502-016-0242-3

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments. Plant Signal Behav 7(11):1456–1466. https://doi.org/10.4161/psb.21949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou J, Wu Y, Li X, Wei B, Li S, Wang X (2018) Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere 193:852–860

    CAS  PubMed  Google Scholar 

  • Joshi PK, Saxena SC, Arora S (2011) Acta Physiol Plant 33:811–822

    CAS  Google Scholar 

  • Kananont N, Pichyangkura R, Chanprame S, Chadchawan S, Limpanavech P (2010) Chitosan specificity for the in vitro seed germination of two Dendrobium orchids (Asparagales: Orchidaceae). Sci Hortic 124(2):239–247

    CAS  Google Scholar 

  • Kato H, Suzuki M, Fujita K, Horie M, Endoh S, Yoshida Y, Iwahashi H, Takahashi K, Nakamura A, Kinugasa S (2009) Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment. Toxicol In Vitro 23(5):927–934

    CAS  PubMed  Google Scholar 

  • Khare P, Sonane M, Nagar Y, Moin N, Ali S, Gupta KC, Satish A (2014) Size dependent toxicity of zinc oxide nano-particles in soil nematode Caenorhabditis elegans. Nanotoxicology 9(4):423–432. https://doi.org/10.3109/17435390.2014.940403

    Article  CAS  PubMed  Google Scholar 

  • Liu C-G, Desai KGH, Chen X-G, Park H-J (2005) Preparation and characterization of nanoparticles containing trypsin based on hydrophobically modified chitosan. J Agric Food Chem 53(5):1728–1733. https://doi.org/10.1021/jf040304v

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Kotova TI, Timko MP (2019) Increased leaf nicotine content by targeting transcription factor gene expression in commercial flue-cured tobacco (Nicotiana tabacum L.). Genes 10(11):930

    CAS  PubMed Central  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles–a review. Environ Pollut 172:76–85

    CAS  PubMed  Google Scholar 

  • Malerba M, Cerana R (2016) Chitosan effects on plant systems. Int J Mol Sci 17(7):996. https://doi.org/10.3390/ijms17070996

    Article  CAS  PubMed Central  Google Scholar 

  • Mohsenzadeh S, Moosavian SS (2017) Zinc sulphate and nano-zinc oxide effects on some physiological parameters of Rosmarinus officinalis. Am J Plant Sci 8(11):2635–2649

    CAS  Google Scholar 

  • Monreal JA, Jiménez ET, Remesal E, Morillo-Velarde R, Garcia-Maurino Echevarria SC (2007) Proline content of sugar beet storage roots: response to water deficit and nitrogen fertilization at field conditions. Environ Exp Bot 60(2):257–267

    CAS  Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6(1):132–138. https://doi.org/10.1039/c3mt00064h

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Makino N, Ogura Y (1968) Purification and properties of ascorbate oxidase from cucumber. J Biochem 64(2):189–195. https://doi.org/10.1093/oxfordjournals.jbchem.a128879

    Article  CAS  PubMed  Google Scholar 

  • Narendhran S, Rajiv P, Sivaraj R (2016) Influence of zinc oxide nanoparticles on growth of Sesamum indicum L. in zinc deficient soil. Int J Pharm Pharm Sci 8(3):365–371

    CAS  Google Scholar 

  • Panwar, J., Jain, N., Bhargaya, A., Akhtar, M. S., & Yun, Y. S. (2012, May). Positive effect of zinc oxide nanoparticles on tomato plants: A step towards developing nano-fertilizers. In Proceedings of 3rd international conference on environmental research and technology (ICERT), pp. 348–352.

  • Pellegrini L, Rohfritsch O, Fritig B, Legrand M (1994) Phenylalanine ammonia-lyase in tobacco (molecular cloning and gene expression during the hypersensitive reaction to tobacco mosaic virus and the response to a fungal elicitor). Plant Physiol 106(3):877–886. https://doi.org/10.1104/pp.106.3.877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price ML, Butler LG (1977) Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J Agric Food Chem 25(6):1268–1273

    CAS  Google Scholar 

  • Pullagurala VLR, Adisa IO, Rawat S, Kalagara S, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2018) ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum). Plant Physiol Biochem 132:120–127

    Google Scholar 

  • Rai M, Ramachandran KN, Gupta VK (1994) Spectrophotometric method for the determination of total tobacco alkaloids and nicotine. Analyst 119(8):1883–1885

    CAS  Google Scholar 

  • Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, Chen X, Laudeman TW, Timko MP (2008) Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol 147(1):280–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:1–8. https://doi.org/10.1155/2014/925494

    Article  CAS  Google Scholar 

  • Saitoh F, Noma M, Kawashima N (1985) The alkaloid contents of sixty Nicotiana species. Phytochemistry 24(3):477–480

    CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Botany. https://doi.org/10.1155/2012/217037

    Article  Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93(6):906–915

    CAS  PubMed  Google Scholar 

  • Shoji T, Kajikawa M, Hashimoto T (2010) Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22(10):3390–3409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi KS, ur Rahman A, Tajuddin, Husen A (2018) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett. https://doi.org/10.1186/s11671-018-2532-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Tapia-Guerrero YS, Del Prado-Audelo ML, Borbolla-Jiménez FV, Giraldo Gomez DM, García-Aguirre I, Colín-Castro CA, Morales-González JA, Leyva-Gómez G, Magaña JJ (2020) Effect of UV and gamma irradiation sterilization processes in the properties of different polymeric nanoparticles for biomedical applications. Materials 13:1090. https://doi.org/10.3390/ma13051090

    Article  CAS  PubMed Central  Google Scholar 

  • Thunugunta T, Channa Reddy A, Kodthalu Seetharamaiah S, Ramanna Hunashikatti L, Gowdra Chandrappa S, Cherukatu Kalathil N, Dhoranapalli Chinnappa Reddy LR (2018) Impact of Zinc oxide nanoparticles on eggplant (S melongena): studies on growth and the accumulation of nanoparticles. IET Nanobiotechnol 12(6):706–713. https://doi.org/10.1049/iet-nbt.2017.0237

    Article  PubMed  PubMed Central  Google Scholar 

  • Todd AT, Liu E, Polvi SL, Pammett RT, Page JE (2010) A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis in Nicotiana benthamiana. Plant J 62(4):589–600

    CAS  PubMed  Google Scholar 

  • Tripathi DK, Mishra RK, Singh S, Singh S, Singh VP, Singh PK, Chauhan DK, Prasad SM, Dubey NK, Pandey AC (2017) Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate-glutathione cycle. Front Plant Sci 8:1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van SN, Minh HD, Anh DN (2013) Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatal Agric Biotechnol 2:289–294

    Google Scholar 

  • Vankova R, Landa P, Podlipna R, Dobrev PI, Prerostova S, Langhansova L, Vanek T (2017) ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. Sci Total Environ 593:535–542

    PubMed  Google Scholar 

  • Verma ML, Kumar S, Das A, Randhawa JS, Chamundeeswari M (2019) Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ Chem Lett. https://doi.org/10.1007/s10311-019-00942-5

    Article  Google Scholar 

  • Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243

    PubMed  PubMed Central  Google Scholar 

  • Wang XP, Li QQ, Pei ZM, Wang SC (2018) Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol Plant. https://doi.org/10.1007/s10535-018-0813-4

    Article  PubMed  Google Scholar 

  • Whetten RW, Sederoff RR (1992) Phenylalanine ammonia-lyase from loblolly pine: purification of the enzyme and isolation of complementary DNA clones. Plant Physiol 98(1):380–386. https://doi.org/10.1104/pp.98.1.380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav A, Prasad V, Kathe AA, Raj S, Yadav D, Sundaramoorthy C, Vigneshwaran N (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 29(6):641–645

    CAS  Google Scholar 

  • Zafar H, Ali A, Ali JS, Haq IU, Zia M (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00535Austinetal.1976

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarei L, Shahidi S, Elahi SM, Boochani A (2014) In situ growth of zinc oxide nanoparticles on cotton fabric using sonochemical method. Adv Mater Res 856:53–59. https://doi.org/10.4028/www.scientific.net/amr.856.53

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Biotechnology, Shree RamKrishna institute of computer education and applied sciences, Sarvajanik Education Society, Surat for providing infrastructure and proper guidance. We thank our In-charge Principal and HOD, Biotechnology for valuable suggestions and never ending support. We further state that no funding was received for the said work.

Author information

Authors and Affiliations

Authors

Contributions

DB and KVP participated in planning and conducting the experiments, data interpretation and in drafting the manuscript. MN, MDB helped in finalizing the figures and technical writing. AKD contributed towards data interpretation and helped manuscript corrections. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Deepesh Bhatt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13205_2020_2469_MOESM1_ESM.tiff

Supplementary file1 Supplementary Fig. 1 Figure depicting the stepwise process of generation of in vitro callus using Nicotiana benthamiana seeds as a starting material: Sterilized seeds were inoculated into basal MS media(A), Seed germination after 12 -15 days of inoculation (B), Mature leaf formation was seen after 25 days(C), In-vitro leaves used as an explant and inoculated in callus induction media for callus formation(D), Curling of leaves started after 20 days of inoculation(E), Callus formation induced after 10-15 days(F), Callus subculturing for mass multiplication of the callus(G), Callus formation after 4-5 weeks(H), 5-week old mature callus used for further treatment(I), Mature callus distributed into equal parts and treated with various concentration (50, 200, 400, 800 ppm) each of ZnO-NP and CH-ZnO nano-bioformulation and inoculated into MS media. Callus with 0 ppm nanoparticle treatment was used as a control(J) (TIFF 8103 kb)

Supplementary file2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, K.V., Nath, M., Bhatt, M.D. et al. Nanofomulation of zinc oxide and chitosan zinc sustain oxidative stress and alter secondary metabolite profile in tobacco. 3 Biotech 10, 477 (2020). https://doi.org/10.1007/s13205-020-02469-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02469-x

Keywords

Navigation