Skip to main content
Log in

Facile Microwave-Assisted Synthesis of Functionalized Carbon Nitride Quantum Dots as Fluorescence Probe for Fast and Highly Selective Detection of 2,4,6-Trinitrophenol

  • SHORT COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Functionalized carbon nitride quantum dots (CNQDs) are fabricated by moderate carbonization of L-tartaric acid and urea in oil acid media by a facile microwave-assisted solvothermal method. The obtained CNQDs are monodispersed with a narrow size distribution (average size of 3.5 nm), and exhibit excellent selectivity and sensitivity of fluorescence quenching for 2,4,6-trinitrophenol (TNP) with a quenching efficiency coefficient Ksv of 4.75 × 104 M−1. This sensing system exhibits a fast response time within 1 min and a wide linear response range from 0.1 to 15 μM. The limit of detection is as low as 87 nM, which is comparable or lower than the other probes. The application of the developed probe to the detection of TNP in spiked water samples yields satisfactory results. The mechanism of fluorescence quenching is also discussed.

An optical sensor based on functionalized carbon nitride quantum dots (CNQDs) were fabricated from L-tartaric acid and urea by a facile one-pot microwave-assisted solvothermal method, and were effectively utilized to the detection of 2,4,6-trinitrophenol (TNP) based on fluorescence (FL) quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Rong M, Lin L, Song X, Zhao T, Zhong Y, Yan J, Wang Y, Chen X (2015a) A label-free fluorescence sensing approach for selective and sensitive detection of TNP in aqueous solution using graphitic carbon nitride nanosheets. Anal Chem 87:1288–1296

    Article  CAS  PubMed  Google Scholar 

  2. Zhou XH, Li L, Li HH, Li A, Yang T, Huang W (2013a) A flexible Eu(III)-based metal–organic framework: turn-off luminescent sensor for the detection of Fe(III) and picric acid. Dalton Trans 42:12403–12409

    Article  CAS  PubMed  Google Scholar 

  3. Peng Y, Zhang AJ, Dong M, Wang YW (2011) A colorimetric and fluorescent chemosensor for the detection of an explosive—2,4,6-trinitrophenol (TNP). Chem Commun 47:4505–4507

    Article  CAS  Google Scholar 

  4. Liu S, Shi F, Chen L, Su X (2013) Bovine serum albumin coated CuInS2 quantum dots as a near-infrared fluorescence probe for 2,4,6-trinitrophenol detection. Talanta 116:870–875

    Article  CAS  PubMed  Google Scholar 

  5. Xu Y, Li B, Li W, Zhao J, Sun S, Pang Y (2013a) “ICT-not-quenching” near infrared ratiometric fluorescent detection of picric acid in aqueous media. Chem Commun 49:4764–4766

    Article  CAS  Google Scholar 

  6. Roy B, Bar AK, Gole B, Mukherjee PS (2013) Fluorescent tris-imidazolium sensors for picric acid explosive. J Org Chem 78:1306–1310

    Article  CAS  PubMed  Google Scholar 

  7. Dong W, Fei T, Palma-Cando A, Scherf U (2014) Aggregation induced emission and amplified explosive detection of tetraphenylethylene-substituted polycarbazoles. Polym Chem 5:4048–4053

    Article  CAS  Google Scholar 

  8. Sohn H, Sailor MJ, Magde D, Trogler WC (2003) Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles. J Am Chem Soc 125:3821–3830

    Article  CAS  PubMed  Google Scholar 

  9. Pramanik S, Zheng C, Zhang X, Emge TJ, Li J (2011) New microporous metal−organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds. J Am Chem Soc 133:4153–4155

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Ni Y (2014) Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection. Anal Chem 86:7463–7670

    Article  CAS  PubMed  Google Scholar 

  11. Kartha KK, Babu SS, Srinivasan S, Ajayaghosh A (2012) Attogram sensing of trinitrotoluene with a self-assembled molecular gelator. J Am Chem Soc 134:4834–4841

    Article  CAS  PubMed  Google Scholar 

  12. Xu S, Lu H, Li J, Song X, Wang A, Chen L, Han S (2013b) Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene. ACS Appl Mater Interfaces 5:8146–8154

    Article  CAS  PubMed  Google Scholar 

  13. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl 49:6726–6744

    Article  CAS  PubMed  Google Scholar 

  14. Gogoi J, Chowdhury D (2020) Calcium-modified carbon dots derived from polyethylene glycol: fluorescence-based detection of Trifluralin herbicide. J Mater Sci 55:11597–11608

    Article  CAS  Google Scholar 

  15. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  CAS  PubMed  Google Scholar 

  16. Xian J, Weng Y, Guo H, Li Y, Yao B, Weng W (2019) One-pot fabrication of Fe-doped carbon nitride nanoparticles asperoxidase mimetics for H2O2 and glucose detection. Spectrochim Acta A 215:218–224

    Article  CAS  Google Scholar 

  17. Thomas A, Fischer A, Goettmann F, Antonietti M, Müller J-O, Schlögl R, Carlsson JM (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18:4893–4908

    Article  CAS  Google Scholar 

  18. Wang Y, Wang X, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51:68–89

    Article  CAS  Google Scholar 

  19. Zhou Y, Tang L, Zeng G, Chen J, Cai Y, Zhang Y, Yang G, Liu Y, Zhang C, Tang W (2014) Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation. Biosens Bioelectron 61:519–525

    Article  CAS  PubMed  Google Scholar 

  20. Vinu A, Ariga K, Mori T, Nakanishi T, Hishita S, Golberg D, Bando Y (2005) Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride. Adv Mater 17:1648–1652

    Article  CAS  Google Scholar 

  21. Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S-T, Zhong J, Kang Z (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974

    Article  CAS  PubMed  Google Scholar 

  22. Zhu J, Xiao P, Li H, Carabineiro SAC (2014) Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl Mater Interfaces 6:16449–16465

    Article  CAS  PubMed  Google Scholar 

  23. Zhou J, Yang Y, Zhang CY (2013b) A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem Commun 49:8605–8607

    Article  CAS  Google Scholar 

  24. Tian J, Liu Q, Asiri AM, Al-Youbi AO, Sun X (2013) Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal Chem 85:5595–5599

    Article  CAS  PubMed  Google Scholar 

  25. Wang Q, Wang W, Lei J, Xu N, Gao F, Ju H (2013) Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal Chem 85:12182–12188

    Article  CAS  PubMed  Google Scholar 

  26. Zhang H, Huang Y, Zheng Y, Zhou J, Wu Q, Zhang Z, Gan F, Chen W (2019) Fluorescence covalent interaction enhanced sensor for lead ion based on novel graphitic carbon nitride nanocones. Spectrochim Acta A 217:141–146

    Article  CAS  Google Scholar 

  27. Zhang P, Li X, Shao C, Liu Y (2015a) Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis. J Mater Chem A 3:3281–3284

    Article  CAS  Google Scholar 

  28. Chen H-Y, Ruan L-W, Jian X, Qiu L-G (2015) Trace detection of nitro aromatic explosives by highly fluorescent g-C3N4 nanosheets. Analyst 140:637–643

    Article  CAS  PubMed  Google Scholar 

  29. Ma J, Guo B, Cao X, Lin Y, Yao B, Li F, Weng W, Huang L (2015) One-pot fabrication of hollow cross-linked fluorescent carbon nitride nanoparticles and their application in the detection of mercuric ions. Talanta 143:205–211

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  PubMed  Google Scholar 

  31. Cao X, Ma J, Lin Y, Yao B, Li F, Weng W, Lin X (2015) A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions. Spectrochim Acta A 151:875–880

    Article  CAS  Google Scholar 

  32. Lee EZ, Jun YS, Hong WH, Thomas A, Jin MM (2010) Cubic mesoporous graphitic carbon(IV) nitride: an all-in-one chemosensor for selective optical sensing of metal ions. Angew Chem Int Ed 49:9706–9710

    Article  CAS  Google Scholar 

  33. Zhang H, Huang Y, Hu S, Huang Q, Wei C, Zhang W, Kang L, Huang Z, Hao A (2015b) Fluorescent probes for “off–on” sensitive and selective detection of mercury ions and L-cysteine based on graphitic carbon nitride nanosheets. J Mater Chem C 3:2093–2100

    Article  CAS  Google Scholar 

  34. Liu S, Tian J, Wang L, Luo Y, Sun X (2012) A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Adv 2:411–413

    Article  CAS  Google Scholar 

  35. Liu Y, Wang Q, Lei J, Hao Q, Wang W, Ju H (2014) Anodic electrochemiluminescence of graphitic-phase C3N4 nanosheets for sensitive biosensing. Talanta 122:130–134

    Article  CAS  PubMed  Google Scholar 

  36. Rong M, Lin L, Song X, Wang Y, Zhong Y, Yan J, Feng Y, Zeng X, Chen X (2015b) Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch”. Biosens Bioelectron 68:210–217

    Article  CAS  PubMed  Google Scholar 

  37. Lin L, Rong M, Lu S, Song X, Zhong Y, Yan J, Wang Y, Chen X (2015) A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2, 4, 6-trinitrophenol in aqueous solution. Nanoscale 7:1872–1878

    Article  CAS  PubMed  Google Scholar 

  38. Ma Y, Li H, Peng S, Wang L (2012) Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection. Anal Chem 84:8415–8421

    Article  CAS  PubMed  Google Scholar 

  39. Chen BB, Liu ZX, Zou HY, Huang CZ (2016) Highly selective detection of 2,4,6-trinitrophenol by using newly developed terbium-doped blue carbon dots. Analyst 141:2676–2681

    Article  CAS  PubMed  Google Scholar 

  40. Sarkar S, Dutta S, Chakrabarti S, Bairi P, Pal T (2014) Redox-switchable copper (I) metallogel: a metal-organic material for selective and naked-eye sensing of picric acid. ACS Appl Mater Interfaces 6:6308–6316

    Article  CAS  PubMed  Google Scholar 

  41. Dinda D, Gupta A, Shaw BK, Sadhu S, Saha SK (2014) Highly selective detection of trinitrophenol by luminescent functionalized reduced graphene oxide through FRET mechanism. ACS Appl Mater Interfaces 6:10722–10728

    Article  CAS  PubMed  Google Scholar 

  42. Liu X, Li N, Li M, Chen H, Zhang N, Wang Y, Zheng K (2020) Recent progress in fluorescent probes for detection of carbonyl species: formaldehyde, carbon monoxide and phosgene. Coord Chem Rev 404:213109

    Article  CAS  Google Scholar 

  43. Tang L, Xia J, Zhong K, Tang Y, Gao X, Li J (2020a) A simple AIE-active fluorogen for relay recognition of Cu2+ and pyrophosphate through aggregation-switching strategy. Dyes Pigments 178:108379

    Article  CAS  Google Scholar 

  44. Tang L, Zhou L, Yan X, Zhong K, Gao X, Liu X, Li J (2020b) A simple benzothiazole-based mitochondrial-targeting fluorescent probe for visualizing and monitoring viscosity in living cell, lung organ tissue, and living mice. Dyes Pigments 182:108644

    Article  CAS  Google Scholar 

  45. Tang L, Zhou L, Yan X, Zhong K, Gao X, Li J (2020c) A new NIR-emissive fluorescence turn-on probe for Hg2+ detection with a large stokes shift and its multiple applications. J Photochem Photobiol A 387:112160

    Article  CAS  Google Scholar 

  46. Deng F, Xu Z (2019) Heteroatom-substituted rhodamine dyes: structure and spectroscopic properties. Chin Chem Lett 30:1667–1681

    Article  CAS  Google Scholar 

  47. Zhao Q, Tao G, Ge C, Cai Y, Qiao Q, Jia X (2018) Ultrasensitive fluorescent probe for copper ion based on cadmium selenide/cadmium sulfide quantum dots capped with dimercaprol. Spectroscopy Lett 51:216–222

    Article  CAS  Google Scholar 

  48. Zhu J, Zhang Y, Chen Y, Sun T, Tang Y, Huang Y, Yang Q, Ma D, Wang Y, Wang M (2017) A Schiff base fluorescence probe for highly selective turn-on recognition of Zn2+. Tetrahedron Lett 58:365–370

    Article  CAS  Google Scholar 

  49. Mastiholi BM, Tangod VB, Raikar US (2013) Influence of metal nanoparticles on ADS560EI fluorescent laser dye. Optik 124:261–264

    Article  CAS  Google Scholar 

  50. Tangod VB, Raikar P, Mastiholi BM, Raikar US (2014) Solvent polarity studies of highly fluorescent laser dye ADS740WS and its fluorescence quenching with silver nanoparticles. Can J Phys 92:116–123

    Article  CAS  Google Scholar 

  51. Dang DK, Sundaram C, Ngo Y-LT, Choi WM, Chung JS, Kim EJ, Hur SH (2019) Pyromellitic acid-derived highly fluorescent N-doped carbon dots for the sensitive and selective determinaiton of 4-nitrophenol. Dyes Pigments 165:327–334

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Fujian Province of China (Nos. 2018 J01510 and 2016Y0065), Science and Technology Projects of Minnan Normal University (No. MK201723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Weng.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Xue, M., Tao, A. et al. Facile Microwave-Assisted Synthesis of Functionalized Carbon Nitride Quantum Dots as Fluorescence Probe for Fast and Highly Selective Detection of 2,4,6-Trinitrophenol. J Fluoresc 31, 1–9 (2021). https://doi.org/10.1007/s10895-020-02633-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02633-9

Keywords

Navigation