Skip to main content
Log in

Effect of process parameters on steel tube roundness in straightening process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The inclined six-roll tube straightener is an important equipment for the finishing line. It can not only straighten the steel pipe, but also finish the ovality of the cross section. In the actual straightening process, the cross section of the tube is prone to deform, that is, the roundness is not good. The flattening displacement is an important parameter to control cross-section forming of tube. According to the established mechanical model, the analytical calculation equations of the flattening force and the flattening displacement were derived using the energy method. Based on the finite element simulation data, the ratios of the finite element results of the flattening force to the analytical ones were fitted. The correlation coefficient after fitting is greater than 99%, and the fitting effect is excellent. The flattening experiment was carried out on tubes of different materials and different specifications, and the setting method of the optimal flattening displacement during straightening process was obtained. In the actual straightening process, using this flattening displacement, the ovality of straightened steel tube is less than 0.3%. Therefore, the proposed method can provide a reference for the flattening displacement in the actual straightening process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M.Z. Zhu, Journal of Inner Mongolia University of Science and Technology 17 (1998) No. 1, 33–35.

    Google Scholar 

  2. F. Cui, Straightening principle and straightening machine, Metallurgical Industry Press, Beijing, China, 2005.

    Google Scholar 

  3. L.D. Ma, Y.K. Du, Z.J. Liu, L.F. Ma, Int. J. Adv. Manuf. Technol. 105 (2019) 4345–4358.

    Article  Google Scholar 

  4. E.N. Dvorkin, F.M. Medina, J. Eng. Ind. 111 (1989) 351–355.

    Article  Google Scholar 

  5. N.K. Prinja, N.R. Chitkara, Nucl. Eng. Des. 83 (1984) 113–121.

    Article  Google Scholar 

  6. M. Strano, Int. J. Adv. Manuf. Technol. 26 (2005) 733–740.

    Article  Google Scholar 

  7. H.G. Huang, H.P. Zheng, F.S. Du, W.Z. Wang, Adv. Mater. Res. 421 (2011) 56–59.

    Article  Google Scholar 

  8. Y.F. Liu, D.X. E, J. Mater. Eng. Perform. 20 (2011) 1591–1599.

  9. L.J. Li, J. Yang, Adv. Mater. Res. 819 (2013) 65–70.

    Article  Google Scholar 

  10. J. Yin, J. Zhao, S.Y. Wang, X.S. Wan, Y.L. Li, J. Iron Steel Res. Int. 21 (2014) 823–829.

    Article  Google Scholar 

  11. J. Zhao, X. Song, Int. J. Adv. Manuf. Technol. 72 (2014) 1615–1624.

    Article  Google Scholar 

  12. L.K. Ji, M. Zheng, H.Y. Chen, Y. Zhao, L.J. Yu, J. Hu, H.P. Teng, J. Braz. Soc. Mech. Sci. Eng. 37 (2015) 1811–1818.

    Article  Google Scholar 

  13. L.F. Ma, Z.Y. Ma, W.T. Jia, Y.Y. Lv, Y.P. Jiang, H.J. Xu, P.T. Liu, Int. J. Adv. Manuf. Technol.79 (2015) 1519–1529.

    Article  Google Scholar 

  14. J. Zhao, G.C. Yu, R. Ma, J. Mater. Process. Technol. 231 (2016) 501–512.

    Article  Google Scholar 

  15. Z.Q. Zhang, Y.H. Yan, H.L. Yang, J. Mater. Process. Technol. 238 (2016) 305–314.

    Article  Google Scholar 

  16. Z.Q. Zhang, J. Iron Steel Res. Int. 23 (2016) 745–755.

    Article  Google Scholar 

  17. Z.Q. Zhang, Int. J. Adv. Manuf. Technol. 102 (2019) 2633–2647.

    Article  Google Scholar 

  18. A. Fatemi, S. Kenny, J. Offshore Mech. Arct. Eng. 139 (2017) 031702.

    Article  Google Scholar 

  19. G.C. Yu, R.X. Zhai, J. Zhao, R. Ma, Int. J. Adv. Manuf. Technol. 94 (2018) 4011–4021.

    Article  Google Scholar 

  20. C.G. Wang, Z.Y. Zhang, R.X. Zhai, G.C. Yu, J. Zhao, Thin-Walled Struct. 129 (2018) 85–93.

    Article  Google Scholar 

  21. C.G. Wang, G.C. Yu, W. Wang, J. Zhao, J. Mater. Process. Technol. 255 (2018) 150–160.

    Article  Google Scholar 

  22. F. Munekatsu, Steel Pipe (1985) 410–416.

  23. Z.Q. Zhang, B.S. Zhang, H.L. Yang, Y.H. Yan, J. Northeast. Univ. (Nat. Sci.) 33 (2012) 409–413.

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2018YFB1308700), Applied Basic Research Programs of Shanxi Province (Grant Nos. 201901D111244 and 201901D211311), and Major Science and Technology Projects of Shanxi Province (Grant No. 20181102016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-dong Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Ld., Du, Yk., Meng, Zj. et al. Effect of process parameters on steel tube roundness in straightening process. J. Iron Steel Res. Int. 27, 1270–1283 (2020). https://doi.org/10.1007/s42243-020-00497-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00497-8

Keywords

Navigation