Skip to main content
Log in

Megawatt-Level Repetitively Pulsed Erbium 3-µm Laser with Strong Thermal Lens Compensation

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We report on an increase in the average power of a repetitively pulsed (10 Hz) nanosecond 3-µm laser due to the compensation of a strong thermal lens in the Cr:Er:YSGG laser cavity maintaining the megawatt-level peak power. Thermally-induced beam distortions are measured in a set of 3-µm erbium crystals (Er:YAG, Er:YSGG, Cr:Er:YSGG), a scheme for compensating a thermal lens in a Cr:Er:YSGG Q-switched laser with a pulse energy of 23 mJ at a repetition rate of 10 Hz in with low-order transverse mode beam is proposed and experimentally implemented. The developed approach makes it possible to control the cavity mode in high-power nanosecond 3-µm lasers with flashlamp or diode pumping, which are used for a variety of scientific and technological applications, including pumping laser crystals in the middle infrared range, as well as laser-induced microstructuring and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Migal and F. V. Potemkin, JETP Lett. 107, 285 (2018).

    Article  ADS  Google Scholar 

  2. K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, and W. Ruderman, Opt. Lett. 25, 841 (2000).

    Article  ADS  Google Scholar 

  3. E. Migal, A. Pushkin, B. Bravy, V. Gordienko, N. Minaev, A. Sirotkin, and F. Potemkin, Opt. Lett. 44, 2550 (2019).

    Article  ADS  Google Scholar 

  4. F. V. Potemkin, E. A. Migal, A. V. Pushkin, A. A. Sirotkin, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmar’kov, V. V. Firsov, M. P. Frolov, and V. M. Gordienko, Laser Phys. Lett. 13, 125403 (2016).

    Article  ADS  Google Scholar 

  5. B. G. Bravy, Y. A. Chernyshev, V. M. Gordienko, E. F. Makarov, V. Y. Panchenko, V. T. Platonenko, and G. K. Vasilyev, Opt. Express 20, 25536 (2012).

    Article  ADS  Google Scholar 

  6. V. A. Solov’ev, M. Y. Chernov, S. V. Morozov, K. E. Kudryavtsev, A. A. Sitnikova, and S. V. Ivanov, JETP Lett. 110, 313 (2019).

    Article  ADS  Google Scholar 

  7. J. Wang, H. Niino, and A. Yabe, Appl. Phys. A: Mater. Sci. Process. 20, 25536 (1999).

    Google Scholar 

  8. R. Böhme, J. Laser Micro-Nanoeng. 1, 190 (2006).

    Article  Google Scholar 

  9. B. Lan, M. H. Hong, K. D. Ye, Z. B. Wang, S. X. Cheng, and T. C. Chong, Jpn. J. Appl. Phys. 43(10R), 7102 (2004).

    Article  ADS  Google Scholar 

  10. G. B. J. Cadot, D. A. Axinte, and J. Billingham, Int. J. Mach. Tools Manuf. 107, 8 (2016).

    Article  Google Scholar 

  11. K. Zimmer, R. Böhme, D. Ruthe, and B. Rauschenbach, Appl. Phys. A Mater. Sci. Process. 84, 455 (2006).

    Article  ADS  Google Scholar 

  12. A. V. Pushkin, A. S. Bychkov, A. A. Karabutov, and F. V. Potemkin, Laser Phys. Lett. 15, 065401 (2018).

    Article  ADS  Google Scholar 

  13. W. Lauterborn and A. Vogel, in Shock Wave Emission by Laser Generated Bubbles Bubble Dynamics and Shock Waves, Ed. by C. F. Delale (Springer, Berlin, Heidelberg, 2013), p. 67.

  14. T. Ivanusic, M. Lukac, N. Lukac, and M. Jezersek, J. LAHA 1, 10 (2019).

    Google Scholar 

  15. A. A. Antoshin, S. N. Churbanov, N. V. Minaev, D. Zhang, Y. Zhang, A. I. Shpichka, and P. S. Timashev, Bioprinting 15, e00052 (2019).

    Article  Google Scholar 

  16. V. Yusupov, S. Churbanov, E. Churbanova, K. Bardakova, K. Antoshin, S. Evlashin, P. Timashev, and N. Minaev, Int. J. Bioprinting 6, 3 (2020).

    Article  Google Scholar 

  17. D. M. Rines, G. A. Rines, and P. F. Moulton, in Advanced Solid State Lasers, Ed. by B. H. T. Chai and S. A. Payne, OSA Proc. Ser. 24, 184 (1995).

  18. M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galeckim J. Kasprzak, S. Gross, A. Heinrichn, and T. Bragagna, Laser Phys. Lett. 7, 498 (2010).

    Article  ADS  Google Scholar 

  19. J. Wang, T. Cheng, L. Wang, J. Yang, D. Sun, S. Yin, X. Wu, and H. Jiang, Laser Phys. Lett. 12, 105004 (2015).

    Article  ADS  Google Scholar 

  20. S. Hu, J. Wang, T. Cheng, L. Wang, D. Sun, S. Yin, X. Wu, and H. Jiang, Laser Phys. Lett. 16, 4 (2019).

    Google Scholar 

  21. L. Hu, D. Sun, Y. Wang, J. Luo, H. Zhang, Z. Fang, X. Zhao, C. Quan, Z. Han, M. Cheng, and Q. Guo, Infrared Phys. Technol. 105, 103224 (2020).

    Article  Google Scholar 

  22. Q. Cui, M. Wei, Z. Xiong, S. Hu, J. Jiang, L. Wang, T. Cheng, X. Wu, and H. Jiang, Infrared Phys. Technol. 98, 256 (2019).

    Article  ADS  Google Scholar 

  23. Z. Fang, D. Sun, J. Luo, H. Zhang, Z. Zhao, C. Quan, L. Hu, M. Cheng, Q. Zhang, and S. Yin, Opt. Express 25, 239 (2017).

    Google Scholar 

  24. P. Koranda, M. Nemec, H. Jelinkova, J. Sulc, M. Cech, Y.-W. Shi, Y. Matsuura, and M. Miyagi, in Proceedings of the 15th International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, SPIE Proc. 5777, 384 (2005).

  25. L. Wang, J. Wang, J. Yang, X. Wu, D. Sun, S. Yin, H. Jiang, J. Wang, and C. Xu, Opt. Lett. 38, 2150 (2013).

    Article  ADS  Google Scholar 

  26. V. M. Gordienko, F. V. Potemkin, A. V. Pushkin, A. A. Sirotkin, and V. V. Firsov, J. Russ. Laser Res. 36, 570 (2015).

    Article  Google Scholar 

  27. P. Maak, L. Jakab, P. Richter, H. J. Eichler, and B. Liu, Appl. Opt. 39, 3053 (2000).

    Article  ADS  Google Scholar 

  28. M. Messner, A. Heinrich, C. Hagen, K. Unterrainer, and B. Liu, in Solid State Lasers XXVIII: Technology and Devices, Ed. by W. A. Clarkson and R. K. Shori, SPIE Proc. 10896, 1089607 (2019).

  29. A. V. Pushkin, M. M. Mazur, A. A. Sirotkin, V. V. Firsov, and F. V. Potemkin, Opt. Lett. 44, 4837 (2019).

    Article  ADS  Google Scholar 

  30. K. Karki, S. D. Subedi, D. Martyshkin, V. V. Fedorov, and S. Mirov, in Solid State Lasers XXIX: Technology and Devices, Ed. by W. A. Clarkson and R. K. Shori, SPIE Proc. 1125913, 78 (2020).

  31. H. Mirzaeian, S. Manjooran, A. Major, and D. Martyshkin, Photon. North 2014, 9288 (2014).

    Google Scholar 

  32. J. H. Liu, J. R. Lu, J. H. Lu, Z. S. Shao, and M. H. Jiang, Chin. Phys. Lett. 16, 181 (1999).

    Article  ADS  Google Scholar 

  33. E. V. Zharikov, N. N. Il’ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osiko, V. V. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, Sov. J. Quantum Electron. 16, 635 (1986).

    Article  ADS  Google Scholar 

  34. E. Arbabzadah, S. Chard, H. Amrania, C. Phillips, and M. Damzen, Opt. Express 19, 25860 (2011).

    Article  ADS  Google Scholar 

  35. N. Hodgson and H. Weber, Laser Resonators and Beam Propagation, Vol. 108 of Springer Ser. in Optical Science (Springer, New York, 2005).

    Book  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 17-72-20130, modeling part) and by the Russian Foundation for Basic Research (project no. 18-29-20074, experimental part). A.V. Pushkin acknowledges the support of the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pushkin.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 8, pp. 508–515.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushkin, A.V., Slovinskii, I.A. & Potemkin, F.V. Megawatt-Level Repetitively Pulsed Erbium 3-µm Laser with Strong Thermal Lens Compensation. Jetp Lett. 112, 478–484 (2020). https://doi.org/10.1134/S0021364020200023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020200023

Navigation