Skip to main content
Log in

Microstructure, mechanical properties, and corrosion resistance of friction stir welded Mg-Al-Zn alloy thick plate joints

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Mg-Al-Zn (AZ31) of 10-mm thick plates were subjected to friction stir welding (FSW) using a conventional tool (CT) and bobbin tool (BT), respectively. The microstructure, room temperature tensile properties, dynamic compressive mechanical properties, and corrosion resistance of the base metal (BM) and various regions of the friction stir welded joints were investigated systematically. The mean grain size, dislocation density, and precipitate distribution in the various regions of the friction stir welded joints were various due to different thermal cycle and plastic deformation. Compared with the CT, a relatively more homogeneous microstructure, a larger number of high-density dislocations and precipitates were produced in the various regions of the joint prepared by the BT due to higher thermal cycle and strain rate. As a result, the friction stir welded joint prepared by the BT exhibits excellent tensile properties and dynamic compressive mechanical properties, and outstanding corrosion resistances compared to those of the CT. In addition to slight changes in tensile properties and dynamic compressive mechanical properties, the corrosion resistance of the joint prepared by the BT was significantly improved compared to the BM. FSW with BT was suggested to be the optimal method to weld AZ31 alloy thick plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xiong XM, Yang Y, Li JG, Li MM, Peng J, Wen C, Peng XD (2019) Research on the microstructure and properties of a multi-pass friction stir processed 6061Al coating for AZ31 Mg alloy. J Magnes Alloys 7(4):696–706. https://doi.org/10.1016/j.jma.2019.09.001

    Article  CAS  Google Scholar 

  2. Rezaei M, Jabbari AH, Sedighi M (2020) Investigation of surface roughness effects on microstructural and mechanical properties of diffusion bonding between dissimilar AZ91-D magnesium and AA6061 aluminum alloys. Weld World 64:949–962. https://doi.org/10.1007/s40194-020-00883-6

    Article  CAS  Google Scholar 

  3. Ogura T, Yokochi T, Netsu S, Saida K (2016) Microstructure and mechanical properties in laser brazing of A5052/AZ31 dissimilar alloys. Weld World 60:1047–1054. https://doi.org/10.1007/s40194-016-0363-3

    Article  CAS  Google Scholar 

  4. Carlone P, Palazzo GS (2015) Characterization of TIG and FSW weldings in cast ZE41A magnesium alloy. J Mater Process Technol 215:87–94. https://doi.org/10.1016/j.jmatprotec.2014.07.026

    Article  CAS  Google Scholar 

  5. Liu HT, Zhou JX, Zhao DQ, Liu YT, Wu JH, Yang YS, Ma BC, Zhuang HH (2017) Characteristics of AZ31 Mg alloy joint using automatic TIG welding. Int J Miner Metall Mater 24(1):102–108. https://doi.org/10.1007/s12613-017-1383-8

    Article  CAS  Google Scholar 

  6. Liu XC, Sun YF, Nagira T, Ushioda K, Fujii H (2019) Experimental evaluation of strain and strain rate during rapid cooling friction stir welding of pure copper. Sci Technol Weld Join 24(7):352–359. https://doi.org/10.1080/13621718.2018.1556436

    Article  CAS  Google Scholar 

  7. Zhou L, Zhang RX, Hu XY, Guo N, Zhao HH, Huang YX (2019) Effects of rotation speed of assisted shoulder on microstructure and mechanical properties of 6061-T6 aluminum alloy by dual-rotation friction stir welding. Int J Adv Manuf Technol 100:199–208. https://doi.org/10.1007/s00170-018-2570-0

    Article  Google Scholar 

  8. Singh K, Singh G, Singh H (2018) Review on friction stir welding of magnesium alloys. J Magnes Alloys 6(4):399–416. https://doi.org/10.1016/j.jma.2018.06.001

    Article  CAS  Google Scholar 

  9. Templeman Y, Hamu GB, Meshi L (2017) Friction stir welded AM50 and AZ31 Mg alloys: microstructural evolution and improved corrosion resistance. Mater Charact 126:86–95. https://doi.org/10.1016/j.matchar.2017.02.018

    Article  CAS  Google Scholar 

  10. Singh K, Singh G, Singh H (2018) Investigation of microstructure and mechanical properties of friction stir welded AZ61 magnesium alloy joint. J Magnes Alloys 6(3):292–298. https://doi.org/10.1016/j.jma.2018.05.004

    Article  CAS  Google Scholar 

  11. Shang Q, Ni DR, Xue P, Xiao BL, Ma ZY (2017) Evolution of local texture and its effect on mechanical properties and fracture behavior of friction stir welded joint of extruded Mg-3Al-1Zn alloy. Mater Charact 128:14–22. https://doi.org/10.1016/j.matchar.2017.03.018

    Article  CAS  Google Scholar 

  12. Mironov S, Onuma T, Sato YS, Yoneyama S, Kokaw H (2017) Tensile behavior of friction-stir welded AZ31 magnesium alloy. Mater Sci Eng A 679:272–281. https://doi.org/10.1016/j.msea.2016.10.036

    Article  CAS  Google Scholar 

  13. Zeng RC, Chen J, Dietzel W, Zettler R, Santos JFD, Nascimento ML, Kainer KU (2009) Corrosion of friction stir welded magnesium alloy AM50. Corros Sci 51(8):1738–1746. https://doi.org/10.1016/j.corsci.2009.04.031

    Article  CAS  Google Scholar 

  14. Suhuddin UFHR, Mironov S, Sato YS, Kokawa H, Lee CW (2009) Grain structure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Mater 57(18):5406–5418. https://doi.org/10.1016/j.actamat.2009.07.041

    Article  CAS  Google Scholar 

  15. Chowdhury SH, Chen DL, Bhole SD, Cao X, Wanjara P (2013) Friction stir welded AZ31 magnesium alloy: microstructure, texture, and tensile properties. Metall Mater Trans A 44:323–336. https://doi.org/10.1007/s11661-012-1382-3

    Article  CAS  Google Scholar 

  16. Wang WD, Deng DA, Mao ZT, Tong YG, Ran Y (2017) Influence of tool rotation rates on temperature profiles and mechanical properties of friction stir welded AZ31 magnesium alloy. Int J Adv Manuf Technol 88:2191–2200. https://doi.org/10.1007/s00170-016-8918-4

    Article  Google Scholar 

  17. Ugender S (2018) Influence of tool pin profile and rotational speed on the formation of friction stir welding zone in AZ31 magnesium alloy. J Magnes Alloys 6(2):205–213. https://doi.org/10.1016/j.jma.2018.05.001

    Article  CAS  Google Scholar 

  18. Liu G, Ma LN, Ma ZD, Fu XS, Wei GB, Yang Y, Xu TC, Xie WD, Peng XD (2018) Effects of welding speed and post-weld hot rolling on microstructure and mechanical properties of friction stir-welded AZ31 magnesium alloy. Acta Metall Sin (Engl Lett) 31:853–864. https://doi.org/10.1007/s40195-018-0725-5

    Article  CAS  Google Scholar 

  19. Darras B, Emad K (2013) Submerged friction stir processing of AZ31 magnesium alloy. Mater Des 47:133–137. https://doi.org/10.1016/j.matdes.2012.12.026

    Article  CAS  Google Scholar 

  20. Rouhi S, Mostafapour A, Ashjari M (2016) Effects of welding environment on microstructure and mechanical properties of friction stir welded AZ91C magnesium alloy joints. Sci Technol Weld Join 21(1):25–31. https://doi.org/10.1179/1362171815Y.0000000058

    Article  CAS  Google Scholar 

  21. Shen CB (2013) Corrosion characteristics of friction stir welded AZ31 magnesium alloy. Adv Mater Res 785-786:97–100. https://doi.org/10.4028/www.scientific.net/AMR.785-786.97

    Article  CAS  Google Scholar 

  22. Abbasi M, Abdollahzadeh A, Omidvar H, Bagheri B, Rezaei M (2016) Incorporation of SiC particles in FS welded zone of AZ31 Mg alloy to improve the mechanical properties and corrosion resistance. Int J Mater Res 107(6):1–7. https://doi.org/10.3139/146.111369

    Article  CAS  Google Scholar 

  23. Sahu PK, Vasudevan NP, Das B, Pal S (2019) Assessment of self-reacting bobbin tool friction stir welding for joining AZ31 magnesium alloy at inert gas environment. J Magnes Alloys 7(4):661–671. https://doi.org/10.1016/j.jma.2019.05.011

    Article  CAS  Google Scholar 

  24. Li WY, Niu PL, Yan SR, Patel V, Wen Q (2019) Improving microstructural and tensile properties of AZ31B magnesium alloy joints by stationary shoulder friction stir welding. J Manuf Process 37:159–167. https://doi.org/10.1016/j.jmapro.2018.11.014

    Article  Google Scholar 

  25. Mironov S, Onuma T, Sato YS, Kokawa H (2015) Microstructure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Mater 100:301–312. https://doi.org/10.1016/j.actamat.2015.08.066

    Article  CAS  Google Scholar 

  26. Mironov S, Sato YS, Kokawa H (2019) Influence of welding temperature on material flow during friction stir welding of AZ31 magnesium alloy. Metall Mater Trans A 50:2798–2806. https://doi.org/10.1007/s11661-019-05194-0

    Article  CAS  Google Scholar 

  27. Liu XC, Sun YF, Nagira T, Ushioda K, Fujii H (2019) Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method. J Mater Sci Technol 35:1412–1421. https://doi.org/10.1016/j.jmst.2019.01.018

    Article  Google Scholar 

  28. Zhang JL, Liu K, Huang GS, Chen X, Xia DB, Jiang B, Tang AT, Pan FS (2020) Optimizing the mechanical properties of friction stir welded dissimilar joint of AM60 and AZ31 alloys by controlling deformation behavior. Mater Sci Eng A 773:138839. https://doi.org/10.1016/j.msea.2019.138839

    Article  CAS  Google Scholar 

  29. Watanabe H, Tsutsui H, Mukai T, Ishikawa H, Okanda Y, Kohzu M, Higashi K (2001) Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization. Mater Trans 42(7):1200–1205. https://doi.org/10.2320/matertrans.42.1200

    Article  CAS  Google Scholar 

  30. Chang CI, Lee CJ, Huang JC (2004) Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys. Scr Mater 51(6):509–514. https://doi.org/10.1016/j.scriptamat.2004.05.043

    Article  CAS  Google Scholar 

  31. Commin L, Dumont M, Masse JE, Barrallier L (2009) Friction stir welding of AZ31 magnesium alloy rolled sheets: influence of processing parameters. Acta Mater 57(2):326–334. https://doi.org/10.1016/j.actamat.2008.09.011

    Article  CAS  Google Scholar 

  32. Li WY, Fu T, Hütsch L, Hilgert J, Wang FF, Dos Santos JF, Huber N (2014) Effects of tool rotational and welding speed on microstructure and mechanical properties of bobbin-tool friction-stir welded Mg AZ31. Mater Des 64:714–720. https://doi.org/10.1016/j.matdes.2014.07.023

    Article  CAS  Google Scholar 

  33. Esparza JA, Davis WC, Trillo EA, Murr LE (2002) Friction-stir welding of magnesium alloy AZ31B. J Mater Sci Lett 21:917–920. https://doi.org/10.1023/A:1016061303955

    Article  CAS  Google Scholar 

  34. Li GH, Zhou L, Luo SF, Dong FB, Guo N (2020) Microstructure and mechanical properties of bobbin tool friction stir welded ZK60 magnesium alloy. Mater Sci Eng A 776:138953. https://doi.org/10.1016/j.msea.2020.138953

    Article  CAS  Google Scholar 

  35. Wang RF, Mao PL, Liu YY, Chen Y, Wang Z, Wang F, Zhou L, Liu Z (2019) Influence of pre-twinning on high strain rate compressive behavior of AZ31 Mg-alloys. Mater Sci Eng A 742:309–317. https://doi.org/10.1016/j.msea.2018.09.055

    Article  CAS  Google Scholar 

  36. Knezevic M, Levinson A, Harris R, Mishra RK, Doherty RD, Kalidindi SR (2010) Deformation twinning in AZ31: influence on strain hardening and texture evolution. Acta Mater 58:6230–6242. https://doi.org/10.1016/j.actamat.2010.07.041

    Article  CAS  Google Scholar 

  37. Hong SG, Park SH, Chong SL (2011) Strain path dependence of {10-12} twinning activity in a polycrystalline magnesium alloy. Scr Mater 64(2):145–148. https://doi.org/10.1016/j.scriptamat.2010.09.030

    Article  CAS  Google Scholar 

  38. Kumar A, Wang J, Tomé CN (2015) First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals. Acta Mater 85:144–154. https://doi.org/10.1016/j.actamat.2014.11.015

    Article  CAS  Google Scholar 

  39. Chen Y, Tekumalla S, Guo YB, Shabadi R, Shim VPW, Gupta M (2017) The dynamic compressive response of a high-strength magnesium alloy and its nanocomposite. Mater Sci Eng A 702:65–72. https://doi.org/10.1016/j.msea.2017.07.005

    Article  CAS  Google Scholar 

  40. Seifiyan H, Sohi MH, Ansari M, Ahmadkhaniha D, Saremi M (2019) Influence of friction stir processing conditions on corrosion behavior of AZ31B magnesium alloy. J Magnes Alloys 7(4):605–616. https://doi.org/10.1016/j.jma.2019.11.004

    Article  CAS  Google Scholar 

  41. Liu CC, Zheng H, Gu X, Jiang BL, Liang J (2019) Effect of severe shot peening on corrosion behavior of AZ31 and AZ91 magnesium alloys. J Alloys Compd 770:500–506. https://doi.org/10.1016/j.jallcom.2018.08.141

    Article  CAS  Google Scholar 

  42. Liu M, Uggowitzer PJ, Nagasekhar AV, Schmutz P, Easton M, Song GL (2009) Calculated phase diagrams and the corrosion of die-cast Mg–Al alloys. Corros Sci 51(3):602–619. https://doi.org/10.1016/j.corsci.2008.12.015

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the National Natural Science Foundation of China (51861034, 51601167), the Science and Technology Department of Shaanxi Province (2020GY-262, 2019SF-271), the Technology Bureau of Yulin (2019-86-1) and the High-level Talent Project of Yulin University (20GK06) for funding the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenjun Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Liu, J., Ji, Y. et al. Microstructure, mechanical properties, and corrosion resistance of friction stir welded Mg-Al-Zn alloy thick plate joints. Weld World 65, 229–241 (2021). https://doi.org/10.1007/s40194-020-01012-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-020-01012-z

Keywords

Navigation