Skip to main content
Log in

High Temperature Mechanics, Friction, Wear and Adhesion of Heat-Assisted Magnetic Recording

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The majority of data generated today is stored in magnetic storage hard disk drives (HDD) of enterprise-level data centers. The HDD industry is striving for higher areal density capacity to meet increasing demand for data storage. Heat-assisted magnetic recording (HAMR) has been proposed as the next-generation technology that will bring revolutionary areal density gains. However, the technology comes with elevated temperature conditions and inevitably brings corresponding challenges to the head–disk interface (HDI). HDI high temperature tribology is the primary failure mode of HDDs and is discussed in the present work. Temperature dependence of mechanical properties, friction, wear and adhesion are reported based on experimental results from nanoindentation, nanoscratch, nanowear and adhesion experiments. The data reveals quantitative variations of Young’s modulus, hardness, coefficient of friction, and surface energy with temperature. In addition, XPS analysis is performed to measure chemical surface changes, and correlated with the nanomechanical findings.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Reinsel, D., Gantz, J., Rydning, J.: Data age 2025: the digitization of the world from edge to core (2018). https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf. Accessed 11 Oct 2020

  2. ASTC Technology Roadmap. https://idema.org/?page_id=5868

  3. Rai, R., Bhargava, P., Knigge, B., Murthy, A.N.: A method for monitoring head media spacing change in a hard disk drive using an embedded contact sensor. Microsyst. Technol. (2020). https://doi.org/10.1007/s00542-020-04911-9

    Article  Google Scholar 

  4. Trinh, T.D., Sullivan, M., Kirpekar, S., Talke, F.E.: Effect of air and helium on the head–disk interface during load–unload. Tribol. Lett. 66(1), 39 (2018)

    Article  Google Scholar 

  5. Kryder, M.H., Gage, E.C., McDaniel, T.W., Challener, W.A., Rottmayer, R.E., Ju, G., Hsia, Y.T., Erden, M.F.: Heat assisted magnetic recording. Proc. IEEE 96(11), 1810–1835 (2008)

    Article  CAS  Google Scholar 

  6. Weller, D., Parker, G., Mosendz, O., Champion, E., Stipe, B., Wang, X., Klemmer, T., Ju, G., Ajan, A.: A HAMR media technology roadmap to an areal density of 4 Tb/in2. IEEE Trans. Magn. 50(1), 1–8 (2013)

    Article  CAS  Google Scholar 

  7. Marchon, B., Pitchford, T., Hsia, Y.T., Gangopadhyay, S.: The head–disk interface roadmap to an areal density of 4 Tbit/in2. Adv. Tribol. (2013). https://doi.org/10.1155/2013/521086

    Article  Google Scholar 

  8. Strom, B.D., Lee, S., Tyndall, G.W., Khurshudov, A.: Hard disk drive reliability modeling and failure prediction. IEEE Trans. Magn. 43(9), 3676–3684 (2007)

    Article  Google Scholar 

  9. Dahl, J.B., Bogy, D.B.: Lubricant flow and evaporation model for heat-assisted magnetic recording including functional end-group effects and thin film viscosity. Tribol. Lett. 52(1), 27–45 (2013)

    Article  Google Scholar 

  10. Tagawa, N., Andoh, H., Tani, H.: Study on lubricant depletion induced by laser heating in thermally assisted magnetic recording systems: effect of lubricant thickness and bonding ratio. Tribol. Lett. 37(2), 411–418 (2010)

    Article  CAS  Google Scholar 

  11. Jones, P.M., Ahner, J., Platt, C.L., Tang, H., Hohlfeld, J.: Understanding disk carbon loss kinetics for heat assisted magnetic recording. IEEE Trans. Magn. 50(3), 144–147 (2014)

    Article  Google Scholar 

  12. Mangolini, F., Rose, F., Hilbert, J., Carpick, R.W.: Thermally induced evolution of hydrogenated amorphous carbon. Appl. Phys. Lett. 103(16), 161605 (2013)

    Article  CAS  Google Scholar 

  13. Zhang, Y., Polychronopoulou, K., Humood, M., Polycarpou, A.A.: High temperature nanotribology of ultra-thin hydrogenated amorphous carbon coatings. Carbon 123, 112–121 (2017)

    Article  CAS  Google Scholar 

  14. Marchon, B., Guo, X.C., Pathem, B.K., Rose, F., Dai, Q., Feliss, N., Schreck, E., Reiner, J., Mosendz, O., Takano, K., Do, H.: Head–disk interface materials issues in heat-assisted magnetic recording. IEEE Trans. Magn. 50(3), 137–143 (2014)

    Article  CAS  Google Scholar 

  15. Kiely, J.D., Jones, P.M., Yang, Y., Brand, J.L., Anaya-Dufresne, M., Fletcher, P.C., Zavaliche, F., Toivola, Y., Duda, J.C., Johnson, M.T.: Write-induced head contamination in heat-assisted magnetic recording. IEEE Trans. Magn. 53(2), 1–7 (2016)

    Article  Google Scholar 

  16. Xiong, S., Wang, N., Smith, R., Li, D., Schreck, E., Dai, Q.: Material transfer inside head disk interface for heat assisted magnetic recording. Tribol. Lett. 65(2), 74 (2017)

    Article  Google Scholar 

  17. Kiely, J.D., Jones, P.M., Hoehn, J.: Materials challenges for the heat-assisted magnetic recording head–disk interface. MRS Bull. 43(2), 119–124 (2018)

    Article  Google Scholar 

  18. Zhang, Y., Oh, Y., Stauffer, D., Polycarpou, A.A.: A microelectromechanical systems (MEMS) force–displacement transducer for sub-5 nm nanoindentation and adhesion measurements. Rev. Sci. Instrum. 89(4), 045109 (2018)

    Article  CAS  Google Scholar 

  19. Kobayashi, T., Nakatani, Y., Fujiwara, Y.: Media design for three-dimensional heat-assisted magnetic recording. J. Magn. Soc. Jpn (2020). https://doi.org/10.3379/msjmag.2009R004

    Article  Google Scholar 

  20. Johnson, K.L.: The correlation of indentation experiments. J. Mech. Phys. Solids 18(2), 115–126 (1970)

    Article  Google Scholar 

  21. Zhang, Y., Wang, H., Li, X., Tang, H., Polycarpou, A.A.: A finite element correction method for sub-20 nm nanoindentation considering tip bluntness. Int. J. Solids Struct 129, 49–60 (2017)

    Article  CAS  Google Scholar 

  22. Zhang, Y., Shakil, A., Wang, H., Li, X., Tang, H., Polycarpou, A.A.: Effects of SiO2 content on the nanomechanical properties of CoCrPt–SiO2 granular films. Sci. Rep. 9(1), 1–8 (2019)

    Article  CAS  Google Scholar 

  23. Bhushan, B., Koinkar, V.N., Ruan, J.A.: Microtribology of magnetic media. Proc. Inst. Mech. Eng. J 208(1), 17–29 (1994)

    Article  Google Scholar 

  24. Prabhakaran, V., Talke, F.E.: Wear and hardness of carbon overcoats on magnetic recording sliders. Wear 243(1–2), 18–24 (2000)

    Article  CAS  Google Scholar 

  25. Lee, K.M., Yeo, C.D., Polycarpou, A.A.: Nanomechanical property and nanowear measurements for sub-10-nm thick films in magnetic storage. Exp. Mech. 47(1), 107 (2007)

    Article  CAS  Google Scholar 

  26. Bhushan, B.: Nano- to microscale wear and mechanical characterization using scanning probe microscopy. Wear 251(1–12), 1105–1123 (2001)

    Article  Google Scholar 

  27. Erdemir, A.: The role of hydrogen in tribological properties of diamond-like carbon films. Surf. Coat. Technol. 146, 292–297 (2001)

    Article  Google Scholar 

  28. Wang, N., Komvopoulos, K.: Thermal stability of ultrathin amorphous carbon films for energy-assisted magnetic recording. IEEE Trans. Magn. 47(9), 2277–2282 (2011)

    Article  CAS  Google Scholar 

  29. Miyake, S., Yamazaki, S.: Nanoscratch properties of extremely thin diamond-like carbon films. Wear 305(1–2), 69–77 (2013)

    Article  CAS  Google Scholar 

  30. Ma, X.G., Komvopoulos, K., Wan, D., Bogy, D.B., Kim, Y.S.: Effects of film thickness and contact load on nanotribological properties of sputtered amorphous carbon thin films. Wear 254(10), 1010–1018 (2003)

    Article  CAS  Google Scholar 

  31. Mate, C.M., Deng, H., Lo, G.J., Boszormenyi, I., Schreck, E., Marchon, B.: Measuring and modeling flash temperatures at magnetic recording head–disk interfaces for well-defined asperity contacts. Tribol. Lett. 58(2), 27 (2015)

    Article  Google Scholar 

  32. Ovcharenko, A., Yang, M., Chun, K., Talke, F.E.: Simulation of magnetic erasure due to transient slider-disk contacts. IEEE Trans. Magn. 46(3), 770–777 (2010)

    Article  Google Scholar 

  33. Sakhalkar, S.V., Bogy, D.B.: A model for lubricant transfer from media to head during heat-assisted magnetic recording (HAMR) writing. Tribol. Lett. 65(4), 166 (2017)

    Article  Google Scholar 

  34. Seo, Y.W., Rosenkranz, A., Talke, F.E.: Molecular dynamics study of lubricant depletion by pulsed laser heating. Appl. Surf. Sci. 440, 73–83 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The motivation of this work was through a Sponsored Research Program from Seagate Technology LLC, through Grant No. SRA-32724. The TEM image was measured by Dr. X. Zhang, Texas A&M University (now at Purdue University). The XPS analysis was contributed by Dr. K. Polychronopoulou, Khalifa University, while on visit at Texas A&M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas A. Polycarpou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tang, H. & Polycarpou, A.A. High Temperature Mechanics, Friction, Wear and Adhesion of Heat-Assisted Magnetic Recording. Tribol Lett 68, 109 (2020). https://doi.org/10.1007/s11249-020-01348-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01348-z

Keywords

Navigation