Skip to main content
Log in

Autonomous Precision Control of Satellite Formation Flight under Unknown Time-Varying Model and Environmental Uncertainties

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

This paper presents a new methodology for autonomous precision control of satellite formations in the presence of uncertainties and external disturbances. The methodology is developed in two steps. First, using a nominal system model that provides the best assessment of real-life uncertainties, a nonlinear controller that satisfies the formation configuration requirements is developed without making any linearizations/approximations. This closed-form control strategy is inspired by results from analytical dynamics and uses the fundamental equation of constrained motion. In the second step, an adaptive continuous robust controller is developed to compensate for model uncertainties and field disturbances to which the satellite formation may be subjected. This controller is based on a generalization of the concept of sliding mode control, and produces no chattering. The control gain is automatically updated in real time and the norm of the trajectory error is guaranteed to lie within user-provided desired bounds without a priori knowledge of the uncertainty/disturbance bounds. Since the control force is explicitly obtained, the approach is not computationally intensive, thereby making the approach ideal for on-orbit autonomous real-time satellite formation control. Numerical simulations demonstrate the effectiveness of the proposed control methodology, in which a desired formation configuration is required to be precisely and autonomously maintained despite large initial trajectory errors in the presence of uncertain satellite mass and environmental disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Aoude, G.S., How, J.P., Garcia, I.M.: Two-stage path planning approach for designing multiple spacecraft reconfiguration maneuvers. In: Proceedings of the 20th International Symposium on Space Flight Dynamics. Annapolis, USA, September (2007)

  2. Clohessy, W.H., Wiltshire, R.S.: Terminal guidance system for satellite rendezvous. J. Aerospace Sci. 27, 653–658 (1960)

    Article  Google Scholar 

  3. Tschauner, J., Hempel, P.: Rendezvous zueinem in elliptischer bahn umlaufenden ziel. Astronautica Acta. 11, 104–109 (1965)

    MATH  Google Scholar 

  4. Won, C.H., Ahn, H.S.: Nonlinear orbital dynamic equations and state-dependent Riccati equation control of formation flying satellites. J. Astronaut. Sci. 51, 433–449 (2003)

    Article  MathSciNet  Google Scholar 

  5. Wong, H., Kapila, V., Sparks, A.: Adaptive output feedback tracking control of multiple spacecraft. In: Proceedings of the 2001 American control conference, Arlington, USA, June (2001)

  6. de Queiroz, M.S., Kapila, V., Yan, Q.: Adaptive nonlinear control of multiple spacecraft formation flying. J. Guid. Control Dynam. 23, 385–390 (2000)

    Article  Google Scholar 

  7. Vignal, P., Pernicka, H.: Low-thrust spacecraft formation keeping. J. Spacecraft Rockets. 43, 466–475 (2006)

    Article  Google Scholar 

  8. Breger, L., How, J.P.: Gauss’s variational equation-based dynamics and control for formation flying spacecraft. J. Guid. Control Dynam. 30, 437–448 (2007)

    Article  Google Scholar 

  9. Lim, Y., Jung, Y., Bang, H.: Robust model predictive control for satellite formation keeping with eccentricity/inclination vector separation. Adv. Space Res. 61, 2661–2672 (2018)

    Article  Google Scholar 

  10. Hu, Y.-R., Ng, A.: Robust control of spacecraft formation flying. J. Aerosp. Eng. 20, 209–214 (2007)

    Article  MathSciNet  Google Scholar 

  11. Utkin, V.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    Book  Google Scholar 

  12. Utkin, V., Guldner, J., Shi, J.: Sliding Modes in Electromechanical Systems. Taylor and Francis, London (1999)

    Google Scholar 

  13. Yeh, H., Nelson, E., Sparks, A.: Nonlinear tracking control for satellite formations. J. Guid. Control Dynam. 25, 376–386 (2002)

    Article  Google Scholar 

  14. Burton, J.A., Zinober, A.S.: Continuous approximation of variable structure control. Int. J. Syst. Sci. 17, 875–885 (1986)

    Article  Google Scholar 

  15. Massey, T., Shtessel, Y.: Continuous traditional and high-order sliding modes for satellite formation control. J. Guid. Control Dynam. 28, 826–831 (2005)

    Article  Google Scholar 

  16. Udwadia, F.E., Wanichanon, T., Cho, H.: Methodology for satellite formation-keeping in the presence of system uncertainties. J. Guid. Control Dynam. 37, 1611–1624 (2014)

    Article  Google Scholar 

  17. Godard, Kumar, K.D.: Fault tolerant reconfigurable satellite formations using adaptive variable structure techniques. J. Guid. Control Dynam. 33, 969–984 (2010)

    Article  Google Scholar 

  18. Bae, J., Kim, Y.: Adaptive controller design for spacecraft formation flying using sliding mode controller and neural networks. J. Frankl. Inst. 349, 578–603 (2012)

    Article  MathSciNet  Google Scholar 

  19. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: a New Approach. Cambridge University Press, New York (1996)

    Book  Google Scholar 

  20. Koganti, P.B., Udwadia, F.E.: Dynamics and precision control of tumbling multi-body systems. J. Guid. Control Dynam. 40, 584–602 (2017a)

    Article  Google Scholar 

  21. Koganti, P.B., Udwadia, F.E.: Dynamics and precision control of uncertain tumbling multi-body systems. J. Guid. Control Dynam. 40, 1177–1190 (2017b)

    Google Scholar 

  22. Udwadia, F.E.: A new perspective on the tracking control of nonlinear structural and mechanical systems. Proc. R. Soc. London, Ser. A. 459, 1783–1800 (2003)

    Article  MathSciNet  Google Scholar 

  23. Udwadia, F.E., Schutte, A.D.: A unified approach to rigid body rotational dynamics and control. Proc. R. Soc. London, Ser. A. 468, 395–414 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Udwadia, F.E., Wanichanon, T.: Control of uncertain nonlinear multi-body mechanical systems. J. Appl. Mech. 81, 041020 (2013)

    Article  Google Scholar 

  25. Udwadia, F.E., Koganti, P.B.: Dynamics and control of a multi-body planar pendulum. Nonlinear Dynam. 81, 845–866 (2015)

    Article  MathSciNet  Google Scholar 

  26. Udwadia, F.E., Koganti, P.B.: Unified approach to modeling and control of rigid multi-body systems. J. Guid. Control Dynam. 39, 2683–2698 (2016)

    Article  Google Scholar 

  27. Cho, H., Yu, A.: New approach to satellite formation-keeping: exact solution to the full nonlinear problem. J. Aerosp. Eng. 22, 445–455 (2009)

    Article  Google Scholar 

  28. Cho, H., Udwadia, F.E.: Explicit solution to the full nonlinear problem for satellite formation-keeping. Acta Astronaut. 67, 369–387 (2010)

    Article  Google Scholar 

  29. Cho, H., Udwadia, F.E.: Explicit control force and torque determination for satellite formation-keeping with attitude requirements. J. Guid. Control Dynam. 36, 589–605 (2013)

    Article  Google Scholar 

  30. Wanichanon, T., Cho, H., Udwadia, F.E.: Satellite formation-keeping using the fundamental equation in the presence of uncertainties in the system. In: Proceedings of AIAA SPACE 2011 Conference & Exposition. Long Beach, USA, September (2011)

  31. Vallado, V.A.: Fundamentals of Astrodynamics and Applications, 4th edn. Microcosm Press, El Segundo (2013)

    MATH  Google Scholar 

  32. Vaddi, S.S., Vadali, S.R., Alfriend, K.T.: Formation flying: accommodating nonlinearity and eccentricity perturbations. J. Guid. Control Dynam. 26, 214–223 (2003)

    Article  Google Scholar 

  33. Gurfil, P., Seidelmann, P.K.: Celestial Mechanics and Astrodynamics: Theory and Practice. Springer, Berlin (2016)

    Book  Google Scholar 

  34. Tummala, A.R., Dutta, A.: An overview of cube-satellite propulsion technologies and trends. Aerospace. 4, 58 (2017)

    Article  Google Scholar 

  35. Sabol, C., Burns, R., McLaughlin, C.: Satellite formation flying design and evolution. J. Spacecraft Rockets. 38, 270–278 (2001)

    Article  Google Scholar 

  36. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. London, Ser. A. 439, 407–410 (1992)

    Article  MathSciNet  Google Scholar 

  37. Baumgarte, J.: Stabilization of constraint and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  Google Scholar 

  38. Udwadia, F.E.: Optimal tracking control of nonlinear dynamical systems. Proc. R. Soc. London, Ser. A. 464, 2341–2363 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20, 292–296 (1919)

    Article  MathSciNet  Google Scholar 

  40. Hu, Q., Xiao, B.: Adaptive fault tolerant control using integral sliding mode strategy with application to flexible spacecraft. Int. J. Syst. Sci. 44, 2273–2286 (2013)

    Article  MathSciNet  Google Scholar 

  41. Mobayen, S.: A novel global sliding mode control based on exponential reaching law for a class of underactuated systems with external disturbances. J. Comput. Nonlinear Dyn. 11, 021011 (2016)

    Article  Google Scholar 

  42. Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems, 7th edn. Pearson Higher Education, Upper Saddle River (2015)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H. Cho conceptualized the problem, proposed the main idea, investigated the solution, performed numerical simulations for verification, wrote the original draft, and edited and finalized the manuscript. F. E. Udwadia developed and rigorously investigated the adaptive control, edited, and wrote several parts of the final manuscript. T. Wanichanon supported the investigation of the solution and edited the manuscript.

Corresponding author

Correspondence to Hancheol Cho.

Ethics declarations

Conflicts of Interest/Competing Interests

None.

Code Availability

Not available.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, H., Udwadia, F.E. & Wanichanon, T. Autonomous Precision Control of Satellite Formation Flight under Unknown Time-Varying Model and Environmental Uncertainties. J Astronaut Sci 67, 1470–1499 (2020). https://doi.org/10.1007/s40295-020-00233-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-020-00233-0

Keywords

Navigation