Skip to main content
Log in

Percolation of Estimates for \({{\bar{\partial }}}\) by the Method of Alternating Projections

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The method of alternating projections is used to examine how regularity of operators associated to the \({{\bar{\partial }}}\)-Neumann problem percolates up the \({{\bar{\partial }}}\)-complex. The approach revolves around operator identities—rather than estimates—that hold on any Lipschitz domain in \({{\mathbb {C}}}^n\), not necessarily bounded or pseudoconvex. We show that a geometric rate of convergence in von Neumann’s alternating projection algorithm, applied to two basic projection operators, is equivalent to \({{\bar{\partial }}}\) having closed range. This implies that compactness of the \({{\bar{\partial }}}\)-Neumann operator percolates up the \({{\bar{\partial }}}\)-complex whenever \({{\bar{\partial }}}\) has closed range at the corresponding form levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For bounded pseudoconvex domains, the \(\Vert u \Vert ^2\) term is superfluous.

  2. This density result is proved in [15, Proposition 2.1.1] under the assumption that \(b\Omega \) is \(C^2\) smooth. Although it is stated in [22, Proposition 2.3]) for (bounded) domains with \(C^1\) boundary, the proof there uses only the strong interior cone condition, which holds since \(b\Omega \) is Lipschitz. The reduction to smooth \(\eta \) in \({\mathscr {D}}({{\bar{\partial }}}_q)\) is the only argument in this paper that requires any boundary regularity of the domain.

  3. Note that if \(u \in {\mathscr {N}}\!(\square _q)\), then \(\Vert {{\bar{\partial }}}_q u \Vert ^2 + \Vert {{\bar{\partial }}} ^{*}_q u \Vert ^2 = ({{\bar{\partial }}}_q u, {{\bar{\partial }}}_q u) + ({{\bar{\partial }}} ^{*}_q u, {{\bar{\partial }}} ^{*}_q u) = (u, \square _q u) =0\).

  4. Actually, it is true that \(c(A,B)=c(A^{\perp }, B^{\perp })\), but this is not needed here.

  5. Or, equivalently, of the canonical solution operator for \({{\bar{\partial }}}\) or for \({{\bar{\partial }}} ^{*}\).

  6. However, in part (c) of Proposition 5.1, the assumption that \({\mathscr {H}}_{0,q+1} = \{ 0 \}\) and the \(L^2\)-boundedness of \(N_{q+1}\) imply that \({\mathscr {R}}({{\bar{\partial }}}_q)\) and \({\mathscr {R}}({{\bar{\partial }}}_{q+1})\) are closed; see for instance the proof of [12, Proposition 3.5].

References

  1. Ben Moussa, B.: Analyticité semi-globale pour le \({\bar{\partial }}\)-Neumann dans des domaines pseudoconvexes. Ann. Scuola Norm. Sup. Pisa 29, 51–100 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Biard, S., Straube, E.J.: Estimates for the complex Green operator: symmetry, percolation, and interpolation. Trans. Am. Math. Soc. 371, 2003–2020 (2019)

    Article  MathSciNet  Google Scholar 

  3. Castillo, A.Z., Koenig, K.D.: \(L^p\) and weighted estimates for barred derivatives. J. Math. Anal. Appl. 489, 124169 (2020)

    Article  MathSciNet  Google Scholar 

  4. Catlin, D.: Necessary conditions for subellipticity of the \({\bar{\partial }}\)-Neumann problem. Ann. Math. 117, 147–171 (1983)

    Article  MathSciNet  Google Scholar 

  5. Catlin, D.: Subelliptic estimates for the \({\bar{\partial }}\)-Neumann problem on pseudoconvex domains. Ann. Math. 126, 131–191 (1987)

    Article  MathSciNet  Google Scholar 

  6. Celik, M., Sahutoglu, S.: Compactness of the \({\bar{\partial }}\)-Neumann operator and commutators of the Bergman projection with continuous functions. J. Math. Anal. Appl. 409, 393–398 (2014)

    Article  MathSciNet  Google Scholar 

  7. Chakrabarti, D., Laurent-Thiébaut, C., Shaw, M.C.: On the \(L^2\)-Dolbeault cohomology of annuli. Indiana Univ. Math. J. 67, 831–857 (2018)

    Article  MathSciNet  Google Scholar 

  8. Derridj, M.: Régularité pour \({\bar{\partial }}\) dans quelques domaines faiblement pseudoconvexes. J. Differ. Geom. 13, 559–576 (1978)

    Article  Google Scholar 

  9. Derridj, M.: Estimations pour \({\bar{\partial }}\) dans des domaines non pseudo-convexes. Ann. Inst. Fourier Grenoble 28, 239–254 (1978)

    Article  MathSciNet  Google Scholar 

  10. Derridj, M.: Inégalités a priori et estimation sous-elliptique pour \({\bar{\partial }}\) dans des ouverts nonpseudoconvexes. Math. Ann. 249, 27–48 (1980)

    Article  MathSciNet  Google Scholar 

  11. Deutsch, F.: The angle between subspaces of a Hilbert space. In :Approximation theory, wavelets and applications (Maratea, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 454, Kluwer Acad. Publ., Dordrecht, pp. 107–130 (1995)

  12. Herbig, A.-K., McNeal, J.D.: On closed range for \({\bar{\partial }}\). Complex Var. Elliptic Equ. 61, 1073–1089 (2016)

    Article  MathSciNet  Google Scholar 

  13. Ho, L.-H.: Subellipticity of the \({\bar{\partial }}\)-Neumann problem on nonpseudoconvex domains. Trans. Am. Math. Soc. 291, 43–73 (1985)

    MathSciNet  MATH  Google Scholar 

  14. Ho, L.-H.: \({\bar{\partial }}\)-problem on weakly \(q\)-convex domains. Math. Ann. 290, 3–18 (1991)

    Article  MathSciNet  Google Scholar 

  15. Hörmander, L.: \(L^2\) estimates and existence theorems for the \({\bar{\partial }}\) operator. Acta Math. 113, 89–152 (1965)

    Article  MathSciNet  Google Scholar 

  16. Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1984)

    MATH  Google Scholar 

  17. Khidr, S., Abdelkader, O.: The \({\bar{\partial }}\)-equation on an annulus between two strictly \(q\)-convex domains with smooth boundaries. Complex Anal. Oper. Theory 8, 1151–1172 (2014)

    Article  MathSciNet  Google Scholar 

  18. Koenig, K.D.: Maximal hypoellipticity for the \({\bar{\partial }}\)-Neumann problem. Adv. Math. 282, 128–219 (2015)

    Article  MathSciNet  Google Scholar 

  19. McNeal, J.D.: Percolation of estimates up the Cauchy-Riemann complex. Unpublished manuscript (1998)

  20. Post, S.B.: Finite type and subelliptic estimates for the \({\bar{\partial }}\)-Neumann problem, Dissertation, Princeton University (1983)

  21. Shaw, M.C.: Global solvability and regularity for \({\bar{\partial }}\) on an annulus between two weakly pseudoconvex domains. Trans. Am. Math. Soc. 291, 255–267 (1985)

    MathSciNet  MATH  Google Scholar 

  22. Straube, E.J.: Lectures on the \(L^2\)-Sobolev Theory of the \({\bar{\partial }}\)-Neumann Problem. European Mathematical Society, Zürich (2010)

    MATH  Google Scholar 

  23. von Neumann, J.: Functional Operators (Vol. II: The Geometry of Orthogonal Spaces), Annals of Math Studies #22, Princeton University Press (1950)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Koenig.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koenig, K.D., McNeal, J.D. Percolation of Estimates for \({{\bar{\partial }}}\) by the Method of Alternating Projections. J Geom Anal 31, 6922–6940 (2021). https://doi.org/10.1007/s12220-020-00532-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00532-w

Keywords

Mathematics Subject Classification

Navigation