Skip to main content
Log in

Generalized Lagrange–Jacobi–Gauss–Radau collocation method for solving a nonlinear optimal control problem with the classical diffusion equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, a well-known nonlinear optimal control problem (OCP) arisen in a variety of biological, chemical, and physical applications is considered. The quadratic form of the nonlinear cost function is endowed with the state and control functions. In this problem, the dynamic constraint of the system is given by a classical diffusion equation. This article is concerned with a generalization of Lagrange functions. Besides, a generalized Lagrange–Jacobi–Gauss–Radau (GLJGR) collocation method is introduced and applied to solve the aforementioned OCP. Based on initial and boundary conditions, the time and space variables, t and x, are clustered with Jacobi–Gauss–Radau points. Then, to solve the OCP, Lagrange multipliers are used and the optimal control problem is reduced to a parameter optimization problem. Numerical results demonstrate its accuracy, efficiency, and versatility of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. OP. Agrawal, J. Comput. Nonlin. Dyn. 24:3(2) (2008)

  2. O.P. Agrawal, IFAC Proc. 39(11), 68–72 (2006)

    Google Scholar 

  3. K. Mamehrashi, S.A. Yousefi, Int. J. Control 90(2), 298–306 (2017)

    Google Scholar 

  4. F. Andreu, V. Caselles, J.M. Mazon, S. Moll, Arch. Ration. Mech. Anal. 182, 269–297 (2006)

    MathSciNet  Google Scholar 

  5. F. Andreu, V. Caselles, J.M. Mazon, S.J. Moll, Evol. Equat. 7, 113–143 (2007)

    Google Scholar 

  6. N.F. Britton, Reaction-Diffusion Equations and Their Applications to Biology (Academic Press, Cambridge, 1986)

    MATH  Google Scholar 

  7. K. Mamehrashi, S.A. Yousefi, Optim. Contr. Appl. Method. 37(4), 765–781 (2016)

    Google Scholar 

  8. F.L. Lewis, Automatica. 28(2), 345–354 (1992)

  9. W. Marszalek, Appl. Math. Model. 8, 11–14 (1984)

    MathSciNet  Google Scholar 

  10. R.P.I.E.E.E.T. Roesser, Automat. Contr. 20(1), 1–10 (1975)

    MathSciNet  Google Scholar 

  11. S. Attasi, IRIA Rapport Laboria. 30 (1973)

  12. S. Attasi, IRIA Rapport Laboria. 56 (1975)

  13. E. Fornasini, IEEE T. Automat. Contr. 21(4), 484–491 (1976)

    MathSciNet  Google Scholar 

  14. E. Fornasini, G. Marchesini, Math. Sys. Theory. 12(1), 59–72 (1978)

    Google Scholar 

  15. A.E. Bryson, Applied Optimal Control: Optimization, Estimation and Control (CRC Press, Boca Raton, 1975)

    Google Scholar 

  16. A.P. Sage, C.C. White, Optimum Systems Control (Prentice Hall, New York, 1977)

    MATH  Google Scholar 

  17. O.P. Agrawal, Int. J. Control 50(2), 627–638 (1989)

    Google Scholar 

  18. A. Lotfi, M. Dehghan, S.A. Yousefi, Comput. Math. Appl. 62(3), 1055–1067 (2011)

    MathSciNet  Google Scholar 

  19. A.J. Samimi, S.A. Yousefi, A.M. Tehranchian, Appl. Math. Comput. 172(1), 198–209 (2006)

    Google Scholar 

  20. J. Gregory, C. Lin, Constrained optimization in the calculus of variations and optimal control theory. Springer Publishing Company Incorporated (2007)

  21. S. Manabe, Proc. DETC. 3, 609–616 (2003)

    Google Scholar 

  22. HW. Bode, Network analysis and feedback amplifier design (1945)

  23. K. Rabiei, Y. Ordokhani, E. Babolian, Nonlin. Dyn. 88(2), 1013–1026 (2017)

    Google Scholar 

  24. A. Lotfi, S.A. Yousefi, J Optimiz. Theory App. 174(1), 238–255 (2017)

    Google Scholar 

  25. S.A. Yousefi, M. Dehghan, A. Lotfi, Int. J. Comput. Math. 87(5), 1042–1050 (2010)

    MathSciNet  Google Scholar 

  26. J. Li, J.S. Tsai, L.S. Shieh, Asian J. Contr. 5(1), 78–87 (2003)

    Google Scholar 

  27. Q.L. Wei, H.G. Zhang, L.L. Cui, Acta Automatica Sinica. 35(6), 682–692 (2009)

    MathSciNet  Google Scholar 

  28. H. Zhang, D. Liu, Y. Luo, D. Wang, Adaptive Dynamic Programming for Control: Algorithms and Stability (Springer, London, 2013)

    MATH  Google Scholar 

  29. Z. Sabeh, M. Shamsi, M. Dehghan, Math. Methods Appl. Sci. 39(12), 3350–3360 (2016)

    ADS  MathSciNet  Google Scholar 

  30. E.H. Doha, W.M. Abd-Elhameed, A.H. Bhrawy, Collectanea Mathematica. 64(3), 373–394 (2013)

    MathSciNet  Google Scholar 

  31. K. Parand, M. Delkhosh, J. Comput. Appl. Math. 317, 624–642 (2017)

    MathSciNet  Google Scholar 

  32. K. Parand, M. Delkhosh, Boletim da Sociedade Paranaense de Matemática. 36(4), 33–54 (2018)

    MathSciNet  Google Scholar 

  33. A.H. Bhrawy, M.M. Al-Shomrani, Adv. Differ. E. 2012(1), 8 (2012)

    Google Scholar 

  34. E.H. Doha, A.H. Bhrawy, Appl. Numer. Math. 58(8), 1224–1244 (2008)

    MathSciNet  Google Scholar 

  35. E.H. Doha, A.H. Bhrawy, D. Baleanu, S. Ezz-Eldien, Adv. Differ. E. 2014(1), 231 (2014)

    Google Scholar 

  36. A.H. Bhrawy, M.A. Alghamdi, Boundary Value Problem. 2012, 1 (2012)

    Google Scholar 

  37. H.J. Tal-Ezer, Numer. Anal. 23(1), 11–26 (1986)

    MathSciNet  Google Scholar 

  38. H.J. Tal-Ezer, Numer. Anal. 26(1), 1–11 (1989)

    MathSciNet  Google Scholar 

  39. A.H. Bhrawy, Al-Shomrani, MM. Abstract and Applied Analysis, Hindawi Publishing Corporation. 947230, 2012 (2012)

  40. A.H. Bhrawy, E.H. Doha, M.A. Abdelkawy, R.A. Van Gorder, Appl. Math. Model. 40(3), 1703–1716 (2016)

    MathSciNet  Google Scholar 

  41. K. Parand, M. Delkhosh, M. Nikarya, Tbilisi Math. J. 10(1), 31–55 (2017)

    MathSciNet  Google Scholar 

  42. J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edn. (Dover, New York, 2000)

    Google Scholar 

  43. K. Parand, M. Hemami, Int. J. Appl. Comput. Math 3(2):1053–1075 (2016)

  44. M.A. Saker, S. Ezz-Eldien, A.H. Bhrawy, Romanian. J. Phys. 2017(62), 105 (2017)

    Google Scholar 

  45. A.H. Bhrawy, M.A. Abdelkawy, F. Mallawi, Boundary Value Problem. 2015(1), 1–20 (2015)

    Google Scholar 

  46. E.H. Doha, A.H. Bhrawy, M.A. Abdelkawy, J. Comput. Nonlin. Dyn. 2015(1), 1–20 (2015)

    Google Scholar 

  47. K. Parand, S. Latifi, M.M. Moayeri, SeMA J. (2017). https://doi.org/10.1007/s40324-017-0138-9

  48. G.E. Mohammad, A. Kazemi, M. Razzaghi, IEEE T. Autom. Control 40(10), 1793–1796 (1995)

    Google Scholar 

  49. F. Fahroo, Michael Ross I. J. Guid. Control D. 25(1):160-166 (2002)

  50. D. Garg, M. Patterson, W.W. Hager, A.V. Rao, D.A. Benson, G.T. Huntington, Automatica. 46(11), 1843–1851 (2010)

    MathSciNet  Google Scholar 

  51. M. Shamsi, Oprim. Contr. Appl. Met. 32, 668–680 (2011)

    MathSciNet  Google Scholar 

  52. P. J.Williams, Guid. Control D. 27(2):293–296 (2004)

  53. K. Parand, S. Latifi, M. Delkhosh, M.M. Moayeri, Eur. Physical J. Plus. 133(1), 28 (2018)

    ADS  Google Scholar 

  54. K. Parand, S. Latifi, M.M. Moayeri, M. Delkhosh, Commun. Theor. Phys. 69(5), 519 (2018)

    ADS  MathSciNet  Google Scholar 

  55. M. Delkhosh, K. Parand, J. Comput. Sci. 34, 11–32 (2019)

    MathSciNet  Google Scholar 

  56. AH. Zaky, M. Math. Method Appl. Sci. 39(7): 1765-1779 (2015)

  57. A.H. Bhrawy, J.F. Alzaidy, M.A. Abdelkawy, A. Biswas, Nonlin. Dyn. 84(3), 1553–1567 (2016)

    Google Scholar 

  58. A.H. Bhrawy, E.H. Doha, S.S. Ezz-Eldien, M.A. Abdelkawy, Comput. Model. Eng. Sci. 104(3), 185–209 (2015)

    Google Scholar 

  59. A.H. Bhrawy, E.H. Doha, D.Baleanu, R.M. Hafez, Math. Method Appl. Sci. 38(14): 3022-3032 (2015)

  60. E.H. Doha, A.H. Bhrawy, M.A. Abdelkawy, R.A. Van Gorder, J. Comput. Phys. 261, 244–255 (2014)

    ADS  MathSciNet  Google Scholar 

  61. F. Daniele, Polynomial approximation of differential equations, Lecture Notes in Physics. New Series m: Monographs. 8. Springer- Verlag: Berlin (1992)

  62. N. Ozdemir, O.P. Agrawal, D. Karadeniz, B.B. Iskender, Phys. Scr. 2009(T136), 014024 (2009)

    Google Scholar 

  63. M.M. Hasan, X.W. Tangpong, O.P. Agrawal, J. Vib. Control 18(10), 1506–1525 (2012)

    MathSciNet  Google Scholar 

  64. J. Shen, T. Tang, L.L. Wang , Spectral methods: algorithms, analysis and applications. Springer Science & Business Media (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Delkhosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latifi, S., Parand, K. & Delkhosh, M. Generalized Lagrange–Jacobi–Gauss–Radau collocation method for solving a nonlinear optimal control problem with the classical diffusion equation. Eur. Phys. J. Plus 135, 834 (2020). https://doi.org/10.1140/epjp/s13360-020-00847-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00847-1

Navigation