Skip to main content
Log in

The description of mode matching method, in electromagnetic wave transmission from a loss free semi-bounded waveguide to the plasma waveguide

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Using the mode matching technique, the passing phenomenon of electromagnetic waves from a semi-bounded cylindrical dielectric waveguide to a semi-bounded plasma waveguide have been studied. A thin dielectric layer is placed around the plasma waveguide. An electromagnetic wave in a single mode will be injected into the plasma waveguide from the filled dielectric waveguide. The interaction of the incident wave with interface surface, between two semi-bounded waveguides, will produce new modes for the transmitted waves. It will be shown that the transmission coefficients of the transmitted waves depend on several parameters such as the incident wave frequency, characteristic mode number of incident wave, the thickness of the dielectric layer around the plasma and the plasma electron frequency. To obtaining the transmission coefficients, an approximation solution is introduced and the diagrams of the transmission coefficients versus the incident wave frequency for some different geometric dimensions of the waveguides are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.M. Smirnov, Theory of Gas Discharge Plasma, 2015th edn. (Springer, Berlin, 2014)

    MATH  Google Scholar 

  2. E.M. van Veldhuizen, Electrical Discharges for Environmental Purposes: Fundamentals and Applications. Nova Science (2000)

  3. Y.P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991)

    Book  Google Scholar 

  4. Y.-J. Jen, C.-C. Lee, Reflection and transmission phenomena of waves propagating between an isotropic medium and an arbitrarily oriented anisotropic medium. Opt. Lett. 26(4), 190–192 (2001)

    Article  ADS  Google Scholar 

  5. D. Smith, D. Schurig, J. Pendry, Negative refraction of modulated electromagnetic waves. Appl. Phys. Lett. 81(15), 2713–2715 (2002)

    Article  ADS  Google Scholar 

  6. D. Tang, A. Sun, X. Qiu, P. Chu, Interaction of electromagnetic waves with a magnetized non uniform plasma slab. IEEE Trans. Plasma Sci. 31(3), 405–410 (2003)

    Article  ADS  Google Scholar 

  7. L. Ling et al., Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength. J. Electron. Mater. 29.12, 1380–1386 (2000)

    Google Scholar 

  8. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications, 2nd edn. (Wiley-IEEE Press, New York, 2017)

  9. M.R. Spiegel, S. Lipschutz, D. Spellman, Schism’s Outline of Theory and Problems of Vector Analysis and an Introduction to Tensor Analysis (McGraw-Hill, New York, 1959)

    Google Scholar 

  10. M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation (Institution of Engineering and Technology, Stevenage, 2000)

    Book  MATH  Google Scholar 

  11. A.F. Alexandrov, L.S. Bogdankevich, A.A. Rukhadze, Principles of Plasma Electrodynamics, 2nd edn. (URSS, Moscow, 2013)

    Google Scholar 

  12. D.M. Pozar, Microwave Engineering, 4th edn. (Wiley, New York, 2011)

    Google Scholar 

  13. H.A. Haus, J.R. Melcher, Electromagnetic Fields and Energy (Prentice Hall, Prentice, 1989)

    Google Scholar 

  14. K.Y. Guslienko, S. Demokritov, B. Hillebrands, A. Slavin, Effective dipolar boundary conditions for dynamic magnetization in thin magnetic stripes. Phys. Rev. B 66(13), 132402 (2002)

    Article  ADS  Google Scholar 

  15. C. Giuseppe, M. Guglielmi, R. Sorrentino, Advanced Modal Analysis: CAD Techniques for Waveguide Components and Filters (Wiley, New York, 2000)

    Google Scholar 

  16. U. Papziner, F. Arndt, Field theoretical computer-aided design of rectangular and circular iris coupled rectangular or circular waveguide cavity filters. IEEE Trans. Microw. Theory Tech. 41(3), 462–471 (1993)

    Article  ADS  Google Scholar 

  17. J. Palastro, T. Antonsen, S. Morshed, A. York, H.P. Milchberg, propagation and electron acceleration in a corrugated plasma channel. Phys. Rev. E 77(3), 036405 (2008)

    Article  ADS  Google Scholar 

  18. A. York, H. Milchberg, J. Palastro, T. Antonsen, Direct acceleration of electrons in a corrugated plasma waveguide. Phys. Rev. Lett. 100(19), 195001 (2008)

    Article  ADS  Google Scholar 

  19. R.B. White, F.F. Chen, Amplification and absorption of electromagnetic waves in overdense plasmas. Plasma Phys. 16(7), 565 (1974)

    Article  ADS  Google Scholar 

  20. I.N. Kartashov, M.V. Kuzelev, A.A. Rukhadze, Amplification of surface waves in a plasma waveguide by a straight relativistic electron beam in a finite magnetic field. Plasma Phys. Rep. 30(1), 56–61 (2004)

    Article  ADS  Google Scholar 

  21. H. Chen, D. Cheng, Scattering of electromagnetic waves by an anisotropic plasma-coated conducting cylinder. IEEE Trans. Antennas Propag. 12(3), 348–353 (1964)

    Article  ADS  Google Scholar 

  22. R.L. Heinisch, F.X. Bronold, H. Fehske, Optical signatures of the charge of a dielectric particle in a plasma. Phys. Rev. E 88(2), 023109 (2013)

    Article  ADS  Google Scholar 

  23. K. Jozef et al., Generalization of electromagnetic scattering by charged grains through incorporation of interband and intraband effects. Optics Lett. 40(21), 5070–5073 (2015)

    Article  Google Scholar 

  24. K. Miroslav et al., Optical resonances in electrically charged particles and their relation to the Drude model. J. Quantit. Spectrosc. Radiat. Transf. 178, 224–229 (2016)

    Article  Google Scholar 

  25. A. Tatiana Yu, A.V. Tyukhtin, Electromagnetic field of a charge intersecting a cold plasma boundary in a waveguide. Phys. Rev. E 83(6), 066401 (2011)

    Article  ADS  Google Scholar 

  26. A.V. Tyukhtin, Determination of the particle energy in a waveguide with a thin dielectric layer. Phys. Rev. Spec. Top. Acceler. Beams 15(10), 102801 (2012)

    Article  ADS  Google Scholar 

  27. A. Tatiana Yu, A.V. Tyukhtin, Self-acceleration of a charge intersecting a boundary surface in a waveguide. Phys. Rev. Spec. Top. Acceler. Beams 16(8), 081301 (2013)

    Article  ADS  Google Scholar 

  28. R.J. Vidmar, On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers. IEEE Trans. Plasma Sci. 18.4, 733–741 (1990)

    Article  ADS  Google Scholar 

  29. A.B. Petrin, Transmission of microwaves through magnetoactive plasma. IEEE Trans. Plasma Sci. 29(3), 471–478 (2001)

    Article  ADS  Google Scholar 

  30. J.H. Lee, K.K. Dikshitulu, G.C. Nigg, FDTD simulation of electromagnetic wave transformation in a dynamic magnetized plasma. Int J Infrared Millim. Waves 21(8), 1223–1253 (2000)

    Article  Google Scholar 

  31. C.X. Yuan, Z. Zhou, H.G. Sun, Reflection properties of electromagnetic wave in a bounded plasma slab. IEEE Trans. Plasma Sci. 38(12), 3348–3355 (2010)

    Article  ADS  Google Scholar 

  32. A. Nicholas, Principles of Plasma Physics (McGraw-Hill, New York, 1973)

  33. A.A. Grigoreva, A.V. Tyukhtin, V.V. Vorobev, T.Y. Alekhina, S. Antipov, Mode transformation in a circular waveguide with a transverse boundary between a vacuum and a partially dielectric area. IEEE Trans. Microw. Theory Tech. 64(11), 34413448 (2016)

    Article  Google Scholar 

  34. S. Najari, B. Jazi, S. Jahanbakht, The mode generation due to the wave transmission phenomena from a loss free isotropic cylindrical metallic waveguide to the semi-bounded plasma waveguide. Waves Random Compl. Media 1–16 (2019)

  35. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)

    MATH  Google Scholar 

  36. D. Pozar, Microwave Engineering, 4th edition. (Wiley Press, London, 2011)

  37. R.E. Collin, Foundations for Microwave Engineering, 2nd edn. (Wiley-IEEE Press, London, 2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Jazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najari, S., Jazi, B. The description of mode matching method, in electromagnetic wave transmission from a loss free semi-bounded waveguide to the plasma waveguide. Eur. Phys. J. Plus 135, 835 (2020). https://doi.org/10.1140/epjp/s13360-020-00859-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00859-x

Navigation